Textbook Exercises (a) Population = all four-year U.S. college students, Sample = 17,096 selected students

Size: px
Start display at page:

Download "Textbook Exercises (a) Population = all four-year U.S. college students, Sample = 17,096 selected students"

Transcription

1

2

3 Textbook Exercises 3.84 (a) Population = all undergrad college students ages 18 to 24 (b) Sample = 2036 undergrad college students who participate in the survey 3.91 (a) Population = all four-year U.S. college students, Sample = 17,096 selected students 3.98 (b) Population = all restaurant workers, Sample = 100 selected restaurant workers (c) Population = 584 longleaf pines in the tract, Sample = 40 trees that were measured The larger sample size (n = 100 vs. n = 25) will reduce sampling variability so that sample statistics are likely to be closer to population parameters (a) P (x 21) = P (Z 0.41) = (b) µ x = µ x = 18.6 σ x = σx n = = (c) P ( x 21) = P (Z 2.88) = = (a) P ( x > 2) = P (Z > 4.71) 0 (b) The actual sample mean is x = 520/200 = 2.6 flaws per square yard Since x = 2.6 > 2, this is an almost impossible sample outcome according to (a), assuming that the claim that µ = 1.6 flaws is true. Therefore the claim must be false! (This is called a logical proof by contradiction.) But if µ = 1.6 is false, what s the true value of µ? Our best estimate for µ is x = 2.6 from the sample, so it appears that the original claim undercounts the mean number of flaws in the carpet material. (Notice also that a carpet manufacturer interested in carpet sales has an incentive to overstate the claimed quality of the carpet.) P ( x > 15%) = P ( x < 7%) = The number 19 is a parameter and 14 is a statistic These numbers are parameters since they re calculated from census information. 3

4 4.117 (a) Since individual measurements x are normally distributed, x is also normally distributed for any sample size n, as illustrated by the graph in Topic 6 Example 2. (A large sample size n 30 isn t required.) The mean and standard deviation of the bell curve for x are µ x = µ x = 123 σ x = σx n = = (b) P ( x 124) = P (Z 21.65) 0 (off the table) µ x = mm, σ x = mm P ( x > ) = (a) P (x > 60) = (b) P (x < 60) = 1 P (x > 60) = (c) P ( x > 60) = (a) If only 12 policies are sold (with total revenue $ = $3000), it would be a financial disaster for the company if even one home burns down! But selling thousands of policies generates a lot more revenue to protect the company. (b) P ( x > 275) = Between and average defects (a) The variable x = number of people in a car is actually a discrete variable since the possible counts for x are 0, 1, 2,.... But a normally-distributed variable is continuous, as the Topic 6 Notes explain. So the variable x in this exercise isn t normally-distributed. (b) The sample size is large (n = 700 > 30) so the sample mean x has an approximate normal distribution with mean and standard deviation (c) µ x = 1.5 persons/car σ x = persons/car 4

5 5.77 Chapter 5 Exercises success: answer question correctly p = 0.75 x = number of questions answered correctly on the test (a) If n = 100, σ p = P ( p 0.70) = P (Z 1.15) = (b) If n = 250, P ( p 0.70) = P (Z 1.83) = What are English definitions for success and the variable x in this exercise? (a) µ = np = 704(0.328) = (b) P (x 262) = home runs (c) The chances for an average baseball player are approximately 0. Did this feat require a monumental effort by Suzuki? Probably so, since his chance in any year is less than 1% success: order ships within three days p = 0.90 n = 100 x = number of orders from the sample which are shipped within three days (a) σ p = 0.03 P (x 86) = (b) Even if the 90% claim is true, we expect some variation from sample to sample. In fact, there is about a 9% chance for 86 or fewer items from 100 to be shipped within three days. This probability is not so small as to definitely disprove the claim. success: survey contacts black American adult p = 0.12 n = 1500 x = number of black American adults contacted in the survey (a) 180 persons and persons, respectively (b) The answer is So if the survey plan is representative of black Americans, there is still about a 21% chance that any particular sample of 1500 will include 170 or fewer blacks The flaw is that a bell curve for the sample proportion p does not apply since the sample size is too small: n = 12 < 30. (See Some Final Notes About Topic 6 on Notebook page 246.) 5

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution!

Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Section 5 3 The Mean and Standard Deviation of a Binomial Distribution! Previous sections required that you to find the Mean and Standard Deviation of a Binomial Distribution by using the values from a

More information

Making Sense of Cents

Making Sense of Cents Name: Date: Making Sense of Cents Exploring the Central Limit Theorem Many of the variables that you have studied so far in this class have had a normal distribution. You have used a table of the normal

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2019 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Lecture 9. Probability Distributions. Outline. Outline

Lecture 9. Probability Distributions. Outline. Outline Outline Lecture 9 Probability Distributions 6-1 Introduction 6- Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7- Properties of the Normal Distribution

More information

PROBABILITY DISTRIBUTIONS

PROBABILITY DISTRIBUTIONS CHAPTER 3 PROBABILITY DISTRIBUTIONS Page Contents 3.1 Introduction to Probability Distributions 51 3.2 The Normal Distribution 56 3.3 The Binomial Distribution 60 3.4 The Poisson Distribution 64 Exercise

More information

Lecture 9. Probability Distributions

Lecture 9. Probability Distributions Lecture 9 Probability Distributions Outline 6-1 Introduction 6-2 Probability Distributions 6-3 Mean, Variance, and Expectation 6-4 The Binomial Distribution Outline 7-2 Properties of the Normal Distribution

More information

The Binomial Distribution

The Binomial Distribution The Binomial Distribution January 31, 2018 Contents The Binomial Distribution The Normal Approximation to the Binomial The Binomial Hypothesis Test Computing Binomial Probabilities in R 30 Problems The

More information

Notes 12.8: Normal Distribution

Notes 12.8: Normal Distribution Notes 12.8: Normal Distribution For many populations, the distribution of events are relatively close to the average or mean. The further you go out both above and below the mean, there are fewer number

More information

( G O O D L U C K!! )

( G O O D L U C K!! ) Stat 1030 Exam 2 Prep Worksheet Monday Week 10 In today s class we ll work three problems: A, B, and C. The work is open-notes. Work together with Prof. Whitten, classmates and TAs. Carry calculations

More information

IOP 201-Q (Industrial Psychological Research) Tutorial 5

IOP 201-Q (Industrial Psychological Research) Tutorial 5 IOP 201-Q (Industrial Psychological Research) Tutorial 5 TRUE/FALSE [1 point each] Indicate whether the sentence or statement is true or false. 1. To establish a cause-and-effect relation between two variables,

More information

Sampling Distributions For Counts and Proportions

Sampling Distributions For Counts and Proportions Sampling Distributions For Counts and Proportions IPS Chapter 5.1 2009 W. H. Freeman and Company Objectives (IPS Chapter 5.1) Sampling distributions for counts and proportions Binomial distributions for

More information

Module 4: Probability

Module 4: Probability Module 4: Probability 1 / 22 Probability concepts in statistical inference Probability is a way of quantifying uncertainty associated with random events and is the basis for statistical inference. Inference

More information

The Normal Probability Distribution

The Normal Probability Distribution 1 The Normal Probability Distribution Key Definitions Probability Density Function: An equation used to compute probabilities for continuous random variables where the output value is greater than zero

More information

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation.

No, because np = 100(0.02) = 2. The value of np must be greater than or equal to 5 to use the normal approximation. 1) If n 100 and p 0.02 in a binomial experiment, does this satisfy the rule for a normal approximation? Why or why not? No, because np 100(0.02) 2. The value of np must be greater than or equal to 5 to

More information

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X =

Math 14 Lecture Notes Ch The Normal Approximation to the Binomial Distribution. P (X ) = nc X p X q n X = 6.4 The Normal Approximation to the Binomial Distribution Recall from section 6.4 that g A binomial experiment is a experiment that satisfies the following four requirements: 1. Each trial can have only

More information

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution

Section 7.5 The Normal Distribution. Section 7.6 Application of the Normal Distribution Section 7.6 Application of the Normal Distribution A random variable that may take on infinitely many values is called a continuous random variable. A continuous probability distribution is defined by

More information

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example

Contents. The Binomial Distribution. The Binomial Distribution The Normal Approximation to the Binomial Left hander example Contents The Binomial Distribution The Normal Approximation to the Binomial Left hander example The Binomial Distribution When you flip a coin there are only two possible outcomes - heads or tails. This

More information

CH 5 Normal Probability Distributions Properties of the Normal Distribution

CH 5 Normal Probability Distributions Properties of the Normal Distribution Properties of the Normal Distribution Example A friend that is always late. Let X represent the amount of minutes that pass from the moment you are suppose to meet your friend until the moment your friend

More information

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of

The graph of a normal curve is symmetric with respect to the line x = µ, and has points of Stat 400, section 4.3 Normal Random Variables notes prepared by Tim Pilachowski Another often-useful probability density function is the normal density function, which graphs as the familiar bell-shaped

More information

Unit 04 Review. Probability Rules

Unit 04 Review. Probability Rules Unit 04 Review Probability Rules A sample space contains all the possible outcomes observed in a trial of an experiment, a survey, or some random phenomenon. The sum of the probabilities for all possible

More information

Probability is the tool used for anticipating what the distribution of data should look like under a given model.

Probability is the tool used for anticipating what the distribution of data should look like under a given model. AP Statistics NAME: Exam Review: Strand 3: Anticipating Patterns Date: Block: III. Anticipating Patterns: Exploring random phenomena using probability and simulation (20%-30%) Probability is the tool used

More information

The Binomial and Geometric Distributions. Chapter 8

The Binomial and Geometric Distributions. Chapter 8 The Binomial and Geometric Distributions Chapter 8 8.1 The Binomial Distribution A binomial experiment is statistical experiment that has the following properties: The experiment consists of n repeated

More information

Exercise Questions: Chapter What is wrong? Explain what is wrong in each of the following scenarios.

Exercise Questions: Chapter What is wrong? Explain what is wrong in each of the following scenarios. 5.9 What is wrong? Explain what is wrong in each of the following scenarios. (a) If you toss a fair coin three times and a head appears each time, then the next toss is more likely to be a tail than a

More information

4.1 Probability Distributions

4.1 Probability Distributions Probability and Statistics Mrs. Leahy Chapter 4: Discrete Probability Distribution ALWAYS KEEP IN MIND: The Probability of an event is ALWAYS between: and!!!! 4.1 Probability Distributions Random Variables

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name The bar graph shows the number of tickets sold each week by the garden club for their annual flower show. ) During which week was the most number of tickets sold? ) A) Week B) Week C) Week 5

More information

11.5: Normal Distributions

11.5: Normal Distributions 11.5: Normal Distributions 11.5.1 Up to now, we ve dealt with discrete random variables, variables that take on only a finite (or countably infinite we didn t do these) number of values. A continuous random

More information

Math Tech IIII, May 7

Math Tech IIII, May 7 Math Tech IIII, May 7 The Normal Probability Models Book Sections: 5.1, 5.2, & 5.3 Essential Questions: How can I use the normal distribution to compute probability? Standards: S.ID.4 Properties of the

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

Discrete Random Variables

Discrete Random Variables Discrete Random Variables MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Objectives During this lesson we will learn to: distinguish between discrete and continuous

More information

CHAPTER 5 Sampling Distributions

CHAPTER 5 Sampling Distributions CHAPTER 5 Sampling Distributions 5.1 The possible values of p^ are 0, 1/3, 2/3, and 1. These correspond to getting 0 persons with lung cancer, 1 with lung cancer, 2 with lung cancer, and all 3 with lung

More information

Central Limit Theorem

Central Limit Theorem Central Limit Theorem Lots of Samples 1 Homework Read Sec 6-5. Discussion Question pg 329 Do Ex 6-5 8-15 2 Objective Use the Central Limit Theorem to solve problems involving sample means 3 Sample Means

More information

Chapter 4 and 5 Note Guide: Probability Distributions

Chapter 4 and 5 Note Guide: Probability Distributions Chapter 4 and 5 Note Guide: Probability Distributions Probability Distributions for a Discrete Random Variable A discrete probability distribution function has two characteristics: Each probability is

More information

1. State Sales Tax. 2. Baggage Check

1. State Sales Tax. 2. Baggage Check 1. State Sales Tax A survey asks a random sample of 1500 adults in Ohio if they support an increase in the state sales tax from 5% to 6% with the additional revenue going to education. If 40% of all adults

More information

8.1 Binomial Distributions

8.1 Binomial Distributions 8.1 Binomial Distributions The Binomial Setting The 4 Conditions of a Binomial Setting: 1.Each observation falls into 1 of 2 categories ( success or fail ) 2 2.There is a fixed # n of observations. 3.All

More information

The Normal Approximation to the Binomial Distribution

The Normal Approximation to the Binomial Distribution 7 6 The Normal Approximation to the Binomial Distribution Objective 7. Use the normal approximation to compute probabilities for a binomial variable. The normal distribution is often used to solve problems

More information

Important Terms. Summary. multinomial distribution 234 Poisson distribution 235. expected value 220 hypergeometric distribution 238

Important Terms. Summary. multinomial distribution 234 Poisson distribution 235. expected value 220 hypergeometric distribution 238 6 6 Summary Many variables have special probability distributions. This chapter presented several of the most common probability distributions, including the binomial distribution, the multinomial distribution,

More information

Lecture 18 Section Mon, Feb 16, 2009

Lecture 18 Section Mon, Feb 16, 2009 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Feb 16, 2009 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

Lecture 18 Section Mon, Sep 29, 2008

Lecture 18 Section Mon, Sep 29, 2008 The s the Lecture 18 Section 5.3.4 Hampden-Sydney College Mon, Sep 29, 2008 Outline The s the 1 2 3 The 4 s 5 the 6 The s the Exercise 5.12, page 333. The five-number summary for the distribution of income

More information

5.3 Standard Deviation

5.3 Standard Deviation Math 2201 Date: 5.3 Standard Deviation Standard Deviation We looked at range as a measure of dispersion, or spread of a data set. The problem with using range is that it is only a measure of how spread

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!!

STAT 3090 Test 2 - Version B Fall Student s Printed Name: PLEASE READ DIRECTIONS!!!! Student s Printed Name: Instructor: XID: Section #: Read each question very carefully. You are permitted to use a calculator on all portions of this exam. You are NOT allowed to use any textbook, notes,

More information

Counting Basics. Venn diagrams

Counting Basics. Venn diagrams Counting Basics Sets Ways of specifying sets Union and intersection Universal set and complements Empty set and disjoint sets Venn diagrams Counting Inclusion-exclusion Multiplication principle Addition

More information

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence

Measures of Variation. Section 2-5. Dotplots of Waiting Times. Waiting Times of Bank Customers at Different Banks in minutes. Bank of Providence Measures of Variation Section -5 1 Waiting Times of Bank Customers at Different Banks in minutes Jefferson Valley Bank 6.5 6.6 6.7 6.8 7.1 7.3 7.4 Bank of Providence 4. 5.4 5.8 6. 6.7 8.5 9.3 10.0 Mean

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions.

ME3620. Theory of Engineering Experimentation. Spring Chapter III. Random Variables and Probability Distributions. ME3620 Theory of Engineering Experimentation Chapter III. Random Variables and Probability Distributions Chapter III 1 3.2 Random Variables In an experiment, a measurement is usually denoted by a variable

More information

Probability Distribution Unit Review

Probability Distribution Unit Review Probability Distribution Unit Review Topics: Pascal's Triangle and Binomial Theorem Probability Distributions and Histograms Expected Values, Fair Games of chance Binomial Distributions Hypergeometric

More information

Test Bank Elementary Statistics 2nd Edition William Navidi

Test Bank Elementary Statistics 2nd Edition William Navidi Test Bank Elementary Statistics 2nd Edition William Navidi Completed downloadable package TEST BANK for Elementary Statistics 2nd Edition by William Navidi, Barry Monk: https://testbankreal.com/download/elementary-statistics-2nd-edition-test-banknavidi-monk/

More information

Part V - Chance Variability

Part V - Chance Variability Part V - Chance Variability Dr. Joseph Brennan Math 148, BU Dr. Joseph Brennan (Math 148, BU) Part V - Chance Variability 1 / 78 Law of Averages In Chapter 13 we discussed the Kerrich coin-tossing experiment.

More information

What is the probability of success? Failure? How could we do this simulation using a random number table?

What is the probability of success? Failure? How could we do this simulation using a random number table? Probability Ch.4, sections 4.2 & 4.3 Binomial and Geometric Distributions Name: Date: Pd: 4.2. What is a binomial distribution? How do we find the probability of success? Suppose you have three daughters.

More information

The Central Limit Theorem for Sample Means (Averages)

The Central Limit Theorem for Sample Means (Averages) The Central Limit Theorem for Sample Means (Averages) By: OpenStaxCollege Suppose X is a random variable with a distribution that may be known or unknown (it can be any distribution). Using a subscript

More information

Discrete Probability Distributions

Discrete Probability Distributions Discrete Probability Distributions Chapter 6 McGraw-Hill/Irwin Copyright 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Learning Objectives LO1 Identify the characteristics of a probability

More information

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va

Chapter 3 - Lecture 3 Expected Values of Discrete Random Va Chapter 3 - Lecture 3 Expected Values of Discrete Random Variables October 5th, 2009 Properties of expected value Standard deviation Shortcut formula Properties of the variance Properties of expected value

More information

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution

The Central Limit Theorem. Sec. 8.2: The Random Variable. it s Distribution. it s Distribution The Central Limit Theorem Sec. 8.1: The Random Variable it s Distribution Sec. 8.2: The Random Variable it s Distribution X p and and How Should You Think of a Random Variable? Imagine a bag with numbers

More information

1. [10 points] For a standard normal distribution. Find the indicated probability. For each case, draw a sketch. (a). (3 points) P( z < 152.

1. [10 points] For a standard normal distribution. Find the indicated probability. For each case, draw a sketch. (a). (3 points) P( z < 152. Spring 2007 Math 227 Test #3 Name: Show all necessary work NEATLY, UNDERSTANDABLY and SYSTEMATICALLY for full points. Any understatement and/or false statement may be penalized. This is a closed book,

More information

MATH 264 Problem Homework I

MATH 264 Problem Homework I MATH Problem Homework I Due to December 9, 00@:0 PROBLEMS & SOLUTIONS. A student answers a multiple-choice examination question that offers four possible answers. Suppose that the probability that the

More information

Binomial Distributions

Binomial Distributions P1: GWY/HBQ PB286D-12 P2: GWY/HBQ QC: FCH/SPH PB286-Moore-V5.cls April 17, 2003 T1: FCH 13:37 CHAPTER (AP/Wide World Photos) 12 In this chapter we cover... The binomial setting and binomial distributions

More information

If the distribution of a random variable x is approximately normal, then

If the distribution of a random variable x is approximately normal, then Confidence Intervals for the Mean (σ unknown) In many real life situations, the standard deviation is unknown. In order to construct a confidence interval for a random variable that is normally distributed

More information

6.2.1 Linear Transformations

6.2.1 Linear Transformations 6.2.1 Linear Transformations In Chapter 2, we studied the effects of transformations on the shape, center, and spread of a distribution of data. Recall what we discovered: 1. Adding (or subtracting) a

More information

7 THE CENTRAL LIMIT THEOREM

7 THE CENTRAL LIMIT THEOREM CHAPTER 7 THE CENTRAL LIMIT THEOREM 373 7 THE CENTRAL LIMIT THEOREM Figure 7.1 If you want to figure out the distribution of the change people carry in their pockets, using the central limit theorem and

More information

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage

Statistical Intervals. Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage 7 Statistical Intervals Chapter 7 Stat 4570/5570 Material from Devore s book (Ed 8), and Cengage Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to

More information

HHH HHT HTH THH HTT THT TTH TTT

HHH HHT HTH THH HTT THT TTH TTT AP Statistics Name Unit 04 Probability Period Day 05 Notes Discrete & Continuous Random Variables Random Variable: Probability Distribution: Example: A probability model describes the possible outcomes

More information

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys?

1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? Chapters 6 8 Review 1. Steve says I have two children, one of which is a boy. Given this information, what is the probability that Steve has two boys? (A) 1 (B) 3 1 (C) 3 (D) 4 1 (E) None of the above..

More information

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative

STAT:2010 Statistical Methods and Computing. Using density curves to describe the distribution of values of a quantitative STAT:10 Statistical Methods and Computing Normal Distributions Lecture 4 Feb. 6, 17 Kate Cowles 374 SH, 335-0727 kate-cowles@uiowa.edu 1 2 Using density curves to describe the distribution of values of

More information

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4

Week 7. Texas A& M University. Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Week 7 Oğuz Gezmiş Texas A& M University Department of Mathematics Texas A& M University, College Station Section 3.2, 3.3 and 3.4 Oğuz Gezmiş (TAMU) Topics in Contemporary Mathematics II Week7 1 / 19

More information

2) There is a fixed number of observations n. 3) The n observations are all independent

2) There is a fixed number of observations n. 3) The n observations are all independent Chapter 8 Binomial and Geometric Distributions The binomial setting consists of the following 4 characteristics: 1) Each observation falls into one of two categories success or failure 2) There is a fixed

More information

Statistical Intervals (One sample) (Chs )

Statistical Intervals (One sample) (Chs ) 7 Statistical Intervals (One sample) (Chs 8.1-8.3) Confidence Intervals The CLT tells us that as the sample size n increases, the sample mean X is close to normally distributed with expected value µ and

More information

AP Statistics Test 5

AP Statistics Test 5 AP Statistics Test 5 Name: Date: Period: ffl If X is a discrete random variable, the the mean of X and the variance of X are given by μ = E(X) = X xp (X = x); Var(X) = X (x μ) 2 P (X = x): ffl If X is

More information

MidTerm 1) Find the following (round off to one decimal place):

MidTerm 1) Find the following (round off to one decimal place): MidTerm 1) 68 49 21 55 57 61 70 42 59 50 66 99 Find the following (round off to one decimal place): Mean = 58:083, round off to 58.1 Median = 58 Range = max min = 99 21 = 78 St. Deviation = s = 8:535,

More information

15.063: Communicating with Data Summer Recitation 4 Probability III

15.063: Communicating with Data Summer Recitation 4 Probability III 15.063: Communicating with Data Summer 2003 Recitation 4 Probability III Today s Content Normal RV Central Limit Theorem (CLT) Statistical Sampling 15.063, Summer '03 2 Normal Distribution Any normal RV

More information

MATH 10 INTRODUCTORY STATISTICS

MATH 10 INTRODUCTORY STATISTICS MATH 10 INTRODUCTORY STATISTICS Tommy Khoo Your friendly neighbourhood graduate student. It is Time for Homework Again! ( ω `) Please hand in your homework. Third homework will be posted on the website,

More information

Central Limit Theorem (cont d) 7/28/2006

Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem (cont d) 7/28/2006 Central Limit Theorem for Binomial Distributions Theorem. For the binomial distribution b(n, p, j) we have lim npq b(n, p, np + x npq ) = φ(x), n where φ(x) is

More information

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions

Chapter 4. Section 4.1 Objectives. Random Variables. Random Variables. Chapter 4: Probability Distributions Chapter 4: Probability s 4. Probability s 4. Binomial s Section 4. Objectives Distinguish between discrete random variables and continuous random variables Construct a discrete probability distribution

More information

Chapter 7. Confidence Intervals and Sample Size. Bluman, Chapter 7. Friday, January 25, 13

Chapter 7. Confidence Intervals and Sample Size. Bluman, Chapter 7. Friday, January 25, 13 Chapter 7 Confidence Intervals and Sample Size 1 1 Chapter 7 Overview Introduction 7-1 Confidence Intervals for the Mean When σ Is Known and Sample Size 7-2 Confidence Intervals for the Mean When σ Is

More information

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by

Normal distribution. We say that a random variable X follows the normal distribution if the probability density function of X is given by Normal distribution The normal distribution is the most important distribution. It describes well the distribution of random variables that arise in practice, such as the heights or weights of people,

More information

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables

Random Variables. Chapter 6: Random Variables 2/2/2014. Discrete and Continuous Random Variables. Transforming and Combining Random Variables Chapter 6: Random Variables Section 6.3 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Random Variables 6.1 6.2 6.3 Discrete and Continuous Random Variables Transforming and Combining

More information

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters

Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters Chapter 6 Confidence Intervals Section 6-1 Confidence Intervals for the Mean (Large Samples) Estimating Population Parameters VOCABULARY: Point Estimate a value for a parameter. The most point estimate

More information

Chapter 8. Binomial and Geometric Distributions

Chapter 8. Binomial and Geometric Distributions Chapter 8 Binomial and Geometric Distributions Lesson 8-1, Part 1 Binomial Distribution What is a Binomial Distribution? Specific type of discrete probability distribution The outcomes belong to two categories

More information

CH 6 Review Normal Probability Distributions College Statistics

CH 6 Review Normal Probability Distributions College Statistics CH 6 Review Normal Probability Distributions College Statistics Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the following uniform density

More information

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011

Standard Deviation. Lecture 18 Section Robb T. Koether. Hampden-Sydney College. Mon, Sep 26, 2011 Standard Deviation Lecture 18 Section 5.3.4 Robb T. Koether Hampden-Sydney College Mon, Sep 26, 2011 Robb T. Koether (Hampden-Sydney College) Standard Deviation Mon, Sep 26, 2011 1 / 42 Outline 1 Variability

More information

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is:

. 13. The maximum error (margin of error) of the estimate for μ (based on known σ) is: Statistics Sample Exam 3 Solution Chapters 6 & 7: Normal Probability Distributions & Estimates 1. What percent of normally distributed data value lie within 2 standard deviations to either side of the

More information

Exam II Math 1342 Capters 3-5 HCCS. Name

Exam II Math 1342 Capters 3-5 HCCS. Name Exam II Math 1342 Capters 3-5 HCCS Name Date Provide an appropriate response. 1) A single six-sided die is rolled. Find the probability of rolling a number less than 3. A) 0.5 B) 0.1 C) 0.25 D 0.333 1)

More information

Final/Exam #3 Form B - Statistics 211 (Fall 1999)

Final/Exam #3 Form B - Statistics 211 (Fall 1999) Final/Exam #3 Form B - Statistics 211 (Fall 1999) This test consists of nine numbered pages. Make sure you have all 9 pages. It is your responsibility to inform me if a page is missing!!! You have at least

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability

More information

Section Introduction to Normal Distributions

Section Introduction to Normal Distributions Section 6.1-6.2 Introduction to Normal Distributions 2012 Pearson Education, Inc. All rights reserved. 1 of 105 Section 6.1-6.2 Objectives Interpret graphs of normal probability distributions Find areas

More information

Chapter 8 Estimation

Chapter 8 Estimation Chapter 8 Estimation There are two important forms of statistical inference: estimation (Confidence Intervals) Hypothesis Testing Statistical Inference drawing conclusions about populations based on samples

More information

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2

Determining Sample Size. Slide 1 ˆ ˆ. p q n E = z α / 2. (solve for n by algebra) n = E 2 Determining Sample Size Slide 1 E = z α / 2 ˆ ˆ p q n (solve for n by algebra) n = ( zα α / 2) 2 p ˆ qˆ E 2 Sample Size for Estimating Proportion p When an estimate of ˆp is known: Slide 2 n = ˆ ˆ ( )

More information

MAKING SENSE OF DATA Essentials series

MAKING SENSE OF DATA Essentials series MAKING SENSE OF DATA Essentials series THE NORMAL DISTRIBUTION Copyright by City of Bradford MDC Prerequisites Descriptive statistics Charts and graphs The normal distribution Surveys and sampling Correlation

More information

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution

Answer Key: Quiz2-Chapter5: Discrete Probability Distribution Economics 70: Applied Business Statistics For Economics & Business (Summer 01) Answer Key: Quiz-Chapter5: Discrete Probability Distribution The number of electrical outages in a city varies from day to

More information

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the

Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the Using the Central Limit Theorem It is important for you to understand when to use the CLT. If you are being asked to find the probability of the mean, use the CLT for the mean. If you are being asked to

More information

Chapter 5. Sampling Distributions

Chapter 5. Sampling Distributions Lecture notes, Lang Wu, UBC 1 Chapter 5. Sampling Distributions 5.1. Introduction In statistical inference, we attempt to estimate an unknown population characteristic, such as the population mean, µ,

More information

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations.

3. The n observations are independent. Knowing the result of one observation tells you nothing about the other observations. Binomial and Geometric Distributions - Terms and Formulas Binomial Experiments - experiments having all four conditions: 1. Each observation falls into one of two categories we call them success or failure.

More information

GOALS. Discrete Probability Distributions. A Distribution. What is a Probability Distribution? Probability for Dice Toss. A Probability Distribution

GOALS. Discrete Probability Distributions. A Distribution. What is a Probability Distribution? Probability for Dice Toss. A Probability Distribution GOALS Discrete Probability Distributions Chapter 6 Dr. Richard Jerz Define the terms probability distribution and random variable. Distinguish between discrete and continuous probability distributions.

More information

The Binomial Probability Distribution

The Binomial Probability Distribution The Binomial Probability Distribution MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives After this lesson we will be able to: determine whether a probability

More information

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017

SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 SECTION 6.2 (DAY 1) TRANSFORMING RANDOM VARIABLES NOVEMBER 16 TH, 2017 TODAY S OBJECTIVES Describe the effects of transforming a random variable by: adding or subtracting a constant multiplying or dividing

More information

Discrete Probability Distributions Chapter 6 Dr. Richard Jerz

Discrete Probability Distributions Chapter 6 Dr. Richard Jerz Discrete Probability Distributions Chapter 6 Dr. Richard Jerz 1 GOALS Define the terms probability distribution and random variable. Distinguish between discrete and continuous probability distributions.

More information

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution)

Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) Data Analytics (CS40003) Practice Set IV (Topic: Probability and Sampling Distribution) I. Concept Questions 1. Give an example of a random variable in the context of Drawing a card from a deck of cards.

More information

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance

Chapter 5 Discrete Probability Distributions. Random Variables Discrete Probability Distributions Expected Value and Variance Chapter 5 Discrete Probability Distributions Random Variables Discrete Probability Distributions Expected Value and Variance.40.30.20.10 0 1 2 3 4 Random Variables A random variable is a numerical description

More information

Examples CH 4 X P(X).2.3?.2

Examples CH 4 X P(X).2.3?.2 Examples CH 4 1. Consider the discrete probability distribution when answering the following question. X 2 4 5 10 P(X).2.3?.2 a. Find the probability that X is large than 2. b. Calculate the mean and variance

More information

Binomial Random Variables

Binomial Random Variables Models for Counts Solutions COR1-GB.1305 Statistics and Data Analysis Binomial Random Variables 1. A certain coin has a 25% of landing heads, and a 75% chance of landing tails. (a) If you flip the coin

More information

The Control Chart for Attributes

The Control Chart for Attributes The Control Chart for Attributes Topic The Control charts for attributes The p and np charts Variable sample size Sensitivity of the p chart 1 Types of Data Variable data Product characteristic that can

More information

Estimation of the Mean and Proportion

Estimation of the Mean and Proportion Chapter 8 Estimation of the Mean and Proportion In statistics, we collect samples to know more about a population. If the sample is representative of the population, the sample mean or proportion should

More information