For these techniques to be efficient, we need to use. M then we introduce techniques to reduce Var[Y ] while. Var[Y ]

Size: px
Start display at page:

Download "For these techniques to be efficient, we need to use. M then we introduce techniques to reduce Var[Y ] while. Var[Y ]"

Transcription

1 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 261 Variance reduction a Idea: Since the Monte Carlo Error is E[Y ] 1 M M j=1 Var[Y ] Y (ωj) Cα M then we introduce techniques to reduce Var[Y ] while keeping E[Y ] unchanged. For these techniques to be efficient, we need to use particular features of Y... a See for instance Monte Carlo methods in financial engineering, by P. Glasserman

2 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 262 Control Variates Suppose that we want to compute E[Y ] and instead of sampling just Yj we also sample an auxiliary r.v., Xj for which we know E[X]. Then, for a given β, we consider the unbiased estimator VM = 1 M M j=1 Yj β 1 M M j=1 (Xj E[X]) Questions: Is there a way to choose optimally β to minimize Var[VM]? Does the strategy reduce the computational effort?

3 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 263 Now we compute Var[VM](β) = 1 M Var[Y βx] = 1 M {Var[Y ]+β2 Var[X] 2βCov[Y,X]} and we minimize over β, yielding β = Cov[Y,X] Var[X] and Var[VM](β )= 1 M Var[Y ] ( 1 (Cov[Y,X])2 Var[X]Var[Y ] ) < 1 M Var[Y ]

4 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 264 Obs: -As long as X is correlated with Y the above procedure reduces the variance... - In practice, we can approximate β by using sample covariances and variances (at least for large M)

5 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 265 Does control variates pay in terms of computational work? Assume that the work to generate the pair (Xj,Yj) is twice the work to generate Yj. Method # samples Computat. Work ( MC C ) 2 ( ɛ Var[Y ] C ) 2 ɛ Var[Y ] ( MC + Cont.Var. C ) 2 ( ɛ Var[V (β )] 2 C ) 2 ɛ Var[V (β )] We see that the strategy only pays if Var[Y ] > 2Var[V (β )] i.e. 1 > 2(1 (ρxy ) 2 )iff(ρxy ) 2 > 1/2.

6 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 266 Obs: As said before, we need to use some knowledge of Y to find a suff. correlated X!!

7 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 267 Antithetic Variates Let Y = g(x) ands.t.x has a symmetric distribution around its mean. Assume E[X] =0. Then X and X are identically distributed, yielding E[g(X)] = E[g( X)] and E[Y ]=E [ ] g(x)+g( X). 2 We then use the unbiased estimator VM = 1 M M j=1 g(xj)+g( Xj) 2

8 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 268 Againwemayaskifitpaystodosointermsof computational work... We have Var[VM] = Var[g(X)+g( X)] 4M Then, assuming that computing the pair (g(x),g( X)) takes double the work for g(x), we need. 2Var[V1] Var[Y ] i.e. Var[g(X)+g( X)] 2Var[g(X)] or just Cov[g(X),g( X)] < 0.

9 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 269 Obs: If g is linear then Var[g(X)+g( X)] = 0 so we expect the method to work for functions that are close to linear On the other hand, for g(x) =X 2, Cov[g(X),g( X)] = Var[g(X)] > 0 and it is worse to apply antithetic variates than to use standard Monte Carlo!

10 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 270 Importance Sampling Idea: Change the probability measure to reduce the variance!! Let ρx,ρz be pdfs s.t. ρ X(x) ˆρZ(x) <C. Then E[Y ]=E[g(X)] = g(x)ρx(x)dx R = g(x) ρ X(x) ˆρZ(x)dx R ˆρZ(x) }{{} =ĝ(x) =E[ĝ(Z)] However, E[(g(X)) 2 ]ande[(ĝ(z)) 2 ] may be different!!

11 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 271 Example: Let g>0 and choose ˆρ = Cgρ, with the normalizing constant ( C = R gρ ) 1 Then E[(ĝ(Z)) 2 ]= R g 2 ρ Cgρ ρ = ( R gρ ) 2 = E[ĝ(Z)] 2 and we have a zero variance estimator!!

12 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 272 This approach is not practical because we need to know C = ( gρ) 1 R which is equivalent to solve the original problem! It indicates though that ˆρ has to follow the product gρ as much as possible. Think of the case where g is nonzero for x A. How should you choose ˆρ?

13 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 273 Numerical Example, Variance reduction: Ex 5.13 Look at J. Carlsson s implementation uppg5_13.m Uses antithetic variates and control variates.

14 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 274 Consider the computation of a call option on an index Z, πt = e r(t t) E[max(Z(T ) K, 0)], (37) where Z is the average of d stocks, Z(t) 1 d d i=1 Si(t) and dsi(t) = rsi(t)dt + σisi(t)dwi(t), i = 1,...,d with volatilities σi 0.2 (2 + sin(i)) i =1,...,d.

15 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 275 The correlation between Wiener processes is given by E[dWi(t)dWi (t)] = exp( 2 i i /d))dt 1 i, i d. The goal of this exercise is to experiment with two different variance reduction techniques, namely the antithetic variates and the control variates. From now on we take d = 10, r =0.04 and T =0.5 inthe example above.

16 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 276 For the application of control variates to (37) use the geometric average Ẑ(t) { d i=1 Si(t)} 1 d, compute ˆπt = e r(t t) E[max(Ẑ(T ) K, 0)] exactly (hint: see which SDE Ẑ follows and find a way to

17 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 277 apply Black-Scholes formula). Then approximate πt ˆπt + t) M e r(t M j=1 { max(z(w (T,ω j)) K, 0) max(ẑ(w (T,ω j)) K, 0) }.

18 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 278

19 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 279

20 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 280

21 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 281

22 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 282

23 SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 283 Can you improve the use of Control Variates for this example?

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

MAS3904/MAS8904 Stochastic Financial Modelling

MAS3904/MAS8904 Stochastic Financial Modelling MAS3904/MAS8904 Stochastic Financial Modelling Dr Andrew (Andy) Golightly a.golightly@ncl.ac.uk Semester 1, 2018/19 Administrative Arrangements Lectures on Tuesdays at 14:00 (PERCY G13) and Thursdays at

More information

Slides for DN2281, KTH 1

Slides for DN2281, KTH 1 Slides for DN2281, KTH 1 January 28, 2014 1 Based on the lecture notes Stochastic and Partial Differential Equations with Adapted Numerics, by J. Carlsson, K.-S. Moon, A. Szepessy, R. Tempone, G. Zouraris.

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by Financial Modeling with Crystal Ball and Excel, Second Edition By John Charnes Copyright 2012 by John Charnes APPENDIX C Variance Reduction Techniques As we saw in Chapter 12, one of the many uses of Monte

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

Results for option pricing

Results for option pricing Results for option pricing [o,v,b]=optimal(rand(1,100000 Estimators = 0.4619 0.4617 0.4618 0.4613 0.4619 o = 0.46151 % best linear combination (true value=0.46150 v = 1.1183e-005 %variance per uniform

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Converting to the Standard Normal rv: Exponential PDF and CDF for x 0 Chapter 7: expected value of x

Converting to the Standard Normal rv: Exponential PDF and CDF for x 0 Chapter 7: expected value of x Key Formula Sheet ASU ECN 22 ASWCC Chapter : no key formulas Chapter 2: Relative Frequency=freq of the class/n Approx Class Width: =(largest value-smallest value) /number of classes Chapter 3: sample and

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods Chapter 8: Option Pricing by Monte Carlo Methods JDEP 384H: Numerical Methods in Business Instructor: Thomas Shores Department of

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (3)

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (3) B. Maddah INDE 504 Discrete-Event Simulation Output Analysis (3) Variance Reduction Variance reduction techniques (VRT) are methods to reduce the variance (i.e. increase precision) of simulation output

More information

Numerical Methods II

Numerical Methods II Numerical Methods II Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute MC Lecture 3 p. 1 Variance Reduction Monte Carlo starts as a very simple method; much of the complexity

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

MSc in Financial Engineering

MSc in Financial Engineering Department of Economics, Mathematics and Statistics MSc in Financial Engineering On Numerical Methods for the Pricing of Commodity Spread Options Damien Deville September 11, 2009 Supervisor: Dr. Steve

More information

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

10. Monte Carlo Methods

10. Monte Carlo Methods 10. Monte Carlo Methods 1. Introduction. Monte Carlo simulation is an important tool in computational finance. It may be used to evaluate portfolio management rules, to price options, to simulate hedging

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Spring 2010 Computer Exercise 2 Simulation This lab deals with

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015 Monte Carlo Methods in Option Pricing UiO-STK4510 Autumn 015 The Basics of Monte Carlo Method Goal: Estimate the expectation θ = E[g(X)], where g is a measurable function and X is a random variable such

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1 Asian Option Pricing: Monte Carlo Control Variate A discrete arithmetic Asian call option has the payoff ( 1 N N + 1 i=0 S T i N K ) + A discrete geometric Asian call option has the payoff [ N i=0 S T

More information

3. Monte Carlo Simulation

3. Monte Carlo Simulation 3. Monte Carlo Simulation 3.7 Variance Reduction Techniques Math443 W08, HM Zhu Variance Reduction Procedures (Chap 4.5., 4.5.3, Brandimarte) Usually, a very large value of M is needed to estimate V with

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

Modern Portfolio Theory

Modern Portfolio Theory Modern Portfolio Theory History of MPT 1952 Horowitz CAPM (Capital Asset Pricing Model) 1965 Sharpe, Lintner, Mossin APT (Arbitrage Pricing Theory) 1976 Ross What is a portfolio? Italian word Portfolio

More information

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1 Computational Efficiency and Accuracy in the Valuation of Basket Options Pengguo Wang 1 Abstract The complexity involved in the pricing of American style basket options requires careful consideration of

More information

Final Exam Key, JDEP 384H, Spring 2006

Final Exam Key, JDEP 384H, Spring 2006 Final Exam Key, JDEP 384H, Spring 2006 Due Date for Exam: Thursday, May 4, 12:00 noon. Instructions: Show your work and give reasons for your answers. Write out your solutions neatly and completely. There

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Option Pricing Using Monte Carlo Methods. A Directed Research Project. Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE

Option Pricing Using Monte Carlo Methods. A Directed Research Project. Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE Option Pricing Using Monte Carlo Methods A Directed Research Project Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Professional Degree

More information

Multilevel Monte Carlo for Basket Options

Multilevel Monte Carlo for Basket Options MLMC for basket options p. 1/26 Multilevel Monte Carlo for Basket Options Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance WSC09,

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

MAFS5250 Computational Methods for Pricing Structured Products Topic 5 - Monte Carlo simulation

MAFS5250 Computational Methods for Pricing Structured Products Topic 5 - Monte Carlo simulation MAFS5250 Computational Methods for Pricing Structured Products Topic 5 - Monte Carlo simulation 5.1 General formulation of the Monte Carlo procedure Expected value and variance of the estimate Multistate

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam

Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay. Solutions to Final Exam Graduate School of Business, University of Chicago Business 41202, Spring Quarter 2007, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (30 pts) Answer briefly the following questions. 1. Suppose that

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

Pricing of European and Asian options with Monte Carlo simulations

Pricing of European and Asian options with Monte Carlo simulations Pricing of European and Asian options with Monte Carlo simulations Variance reduction and low-discrepancy techniques Alexander Ramstro m Umea University Fall 2017 Bachelor Thesis, 15 ECTS Department of

More information

6. Numerical methods for option pricing

6. Numerical methods for option pricing 6. Numerical methods for option pricing Binomial model revisited Under the risk neutral measure, ln S t+ t ( ) S t becomes normally distributed with mean r σ2 t and variance σ 2 t, where r is 2 the riskless

More information

Monte Carlo Methods. School of Mathematics, University of Edinburgh 2016/17

Monte Carlo Methods. School of Mathematics, University of Edinburgh 2016/17 Monte Carlo Methods David Šiška School of Mathematics, University of Edinburgh 2016/17 Contents 1 Introduction 2 1.1 Numerical integration........................... 2 1.2 Derivative pricing..............................

More information

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo

Hedging Under Jump Diffusions with Transaction Costs. Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Hedging Under Jump Diffusions with Transaction Costs Peter Forsyth, Shannon Kennedy, Ken Vetzal University of Waterloo Computational Finance Workshop, Shanghai, July 4, 2008 Overview Overview Single factor

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

Econ 300: Quantitative Methods in Economics. 11th Class 10/19/09

Econ 300: Quantitative Methods in Economics. 11th Class 10/19/09 Econ 300: Quantitative Methods in Economics 11th Class 10/19/09 Statistical thinking will one day be as necessary for efficient citizenship as the ability to read and write. --H.G. Wells discuss test [do

More information

1.1 Interest rates Time value of money

1.1 Interest rates Time value of money Lecture 1 Pre- Derivatives Basics Stocks and bonds are referred to as underlying basic assets in financial markets. Nowadays, more and more derivatives are constructed and traded whose payoffs depend on

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013

University of California, Los Angeles Department of Statistics. Final exam 07 June 2013 University of California, Los Angeles Department of Statistics Statistics C183/C283 Instructor: Nicolas Christou Final exam 07 June 2013 Name: Problem 1 (20 points) a. Suppose the variable X follows the

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Chapter 2. Random variables. 2.3 Expectation

Chapter 2. Random variables. 2.3 Expectation Random processes - Chapter 2. Random variables 1 Random processes Chapter 2. Random variables 2.3 Expectation 2.3 Expectation Random processes - Chapter 2. Random variables 2 Among the parameters representing

More information

15 American. Option Pricing. Answers to Questions and Problems

15 American. Option Pricing. Answers to Questions and Problems 15 American Option Pricing Answers to Questions and Problems 1. Explain why American and European calls on a nondividend stock always have the same value. An American option is just like a European option,

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford KU Leuven Summer School on Uncertainty Quantification May 30 31, 2013 Mike Giles (Oxford) Monte

More information

Martingale Measure TA

Martingale Measure TA Martingale Measure TA Martingale Measure a) What is a martingale? b) Groundwork c) Definition of a martingale d) Super- and Submartingale e) Example of a martingale Table of Content Connection between

More information

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1.

Monte Carlo Methods. Prof. Mike Giles. Oxford University Mathematical Institute. Lecture 1 p. 1. Monte Carlo Methods Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Lecture 1 p. 1 Geometric Brownian Motion In the case of Geometric Brownian Motion ds t = rs t dt+σs

More information

International Finance. Estimation Error. Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc.

International Finance. Estimation Error. Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc. International Finance Estimation Error Campbell R. Harvey Duke University, NBER and Investment Strategy Advisor, Man Group, plc February 17, 2017 Motivation The Markowitz Mean Variance Efficiency is the

More information

Statistics for Managers Using Microsoft Excel 7 th Edition

Statistics for Managers Using Microsoft Excel 7 th Edition Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 5 Discrete Probability Distributions Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap 5-1 Learning

More information

The histogram should resemble the uniform density, the mean should be close to 0.5, and the standard deviation should be close to 1/ 12 =

The histogram should resemble the uniform density, the mean should be close to 0.5, and the standard deviation should be close to 1/ 12 = Chapter 19 Monte Carlo Valuation Question 19.1 The histogram should resemble the uniform density, the mean should be close to.5, and the standard deviation should be close to 1/ 1 =.887. Question 19. The

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

General Notation. Return and Risk: The Capital Asset Pricing Model

General Notation. Return and Risk: The Capital Asset Pricing Model Return and Risk: The Capital Asset Pricing Model (Text reference: Chapter 10) Topics general notation single security statistics covariance and correlation return and risk for a portfolio diversification

More information

Math 623 (IOE 623), Winter 2008: Final exam

Math 623 (IOE 623), Winter 2008: Final exam Math 623 (IOE 623), Winter 2008: Final exam Name: Student ID: This is a closed book exam. You may bring up to ten one sided A4 pages of notes to the exam. You may also use a calculator but not its memory

More information

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality

Point Estimation. Some General Concepts of Point Estimation. Example. Estimator quality Point Estimation Some General Concepts of Point Estimation Statistical inference = conclusions about parameters Parameters == population characteristics A point estimate of a parameter is a value (based

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

Financial Risk Management and Governance Other VaR methods. Prof. Hugues Pirotte

Financial Risk Management and Governance Other VaR methods. Prof. Hugues Pirotte Financial Risk Management and Governance Other VaR methods Prof. ugues Pirotte Idea of historical simulations Why rely on statistics and hypothetical distribution?» Use the effective past distribution

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Advanced Financial Modeling. Unit 2

Advanced Financial Modeling. Unit 2 Advanced Financial Modeling Unit 2 Financial Modeling for Risk Management A Portfolio with 2 assets A portfolio with 3 assets Risk Modeling in a multi asset portfolio Monte Carlo Simulation Two Asset Portfolio

More information

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13.

Reading: You should read Hull chapter 12 and perhaps the very first part of chapter 13. FIN-40008 FINANCIAL INSTRUMENTS SPRING 2008 Asset Price Dynamics Introduction These notes give assumptions of asset price returns that are derived from the efficient markets hypothesis. Although a hypothesis,

More information

Stochastic Modelling in Finance

Stochastic Modelling in Finance in Finance Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH April 2010 Outline and Probability 1 and Probability 2 Linear modelling Nonlinear modelling 3 The Black Scholes

More information

Module 4: Monte Carlo path simulation

Module 4: Monte Carlo path simulation Module 4: Monte Carlo path simulation Prof. Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Module 4: Monte Carlo p. 1 SDE Path Simulation In Module 2, looked at the case

More information

Application to Portfolio Theory and the Capital Asset Pricing Model

Application to Portfolio Theory and the Capital Asset Pricing Model Appendix C Application to Portfolio Theory and the Capital Asset Pricing Model Exercise Solutions C.1 The random variables X and Y are net returns with the following bivariate distribution. y x 0 1 2 3

More information

Alternative VaR Models

Alternative VaR Models Alternative VaR Models Neil Roeth, Senior Risk Developer, TFG Financial Systems. 15 th July 2015 Abstract We describe a variety of VaR models in terms of their key attributes and differences, e.g., parametric

More information

Name: CS3130: Probability and Statistics for Engineers Practice Final Exam Instructions: You may use any notes that you like, but no calculators or computers are allowed. Be sure to show all of your work.

More information

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc.

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc. ASC Topic 718 Accounting Valuation Report Company ABC, Inc. Monte-Carlo Simulation Valuation of Several Proposed Relative Total Shareholder Return TSR Component Rank Grants And Index Outperform Grants

More information

STK 3505/4505: Summary of the course

STK 3505/4505: Summary of the course November 22, 2016 CH 2: Getting started the Monte Carlo Way How to use Monte Carlo methods for estimating quantities ψ related to the distribution of X, based on the simulations X1,..., X m: mean: X =

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial

Lecture 23. STAT 225 Introduction to Probability Models April 4, Whitney Huang Purdue University. Normal approximation to Binomial Lecture 23 STAT 225 Introduction to Probability Models April 4, 2014 approximation Whitney Huang Purdue University 23.1 Agenda 1 approximation 2 approximation 23.2 Characteristics of the random variable:

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

The following table summarizes the unhedged and hedged profit calculations:

The following table summarizes the unhedged and hedged profit calculations: Chapter 4 Introduction to Risk Management Question 4.1 The following table summarizes the unhedged and hedged calculations: Copper price in one year Total cost short forward Net income on hedged $0.70

More information

STOCHASTIC VOLATILITY AND OPTION PRICING

STOCHASTIC VOLATILITY AND OPTION PRICING STOCHASTIC VOLATILITY AND OPTION PRICING Daniel Dufresne Centre for Actuarial Studies University of Melbourne November 29 (To appear in Risks and Rewards, the Society of Actuaries Investment Section Newsletter)

More information

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance

Chapter 8. Markowitz Portfolio Theory. 8.1 Expected Returns and Covariance Chapter 8 Markowitz Portfolio Theory 8.1 Expected Returns and Covariance The main question in portfolio theory is the following: Given an initial capital V (0), and opportunities (buy or sell) in N securities

More information

An Analytical Approximation for Pricing VWAP Options

An Analytical Approximation for Pricing VWAP Options .... An Analytical Approximation for Pricing VWAP Options Hideharu Funahashi and Masaaki Kijima Graduate School of Social Sciences, Tokyo Metropolitan University September 4, 215 Kijima (TMU Pricing of

More information

5. In fact, any function of a random variable is also a random variable

5. In fact, any function of a random variable is also a random variable Random Variables - Class 11 October 14, 2012 Debdeep Pati 1 Random variables 1.1 Expectation of a function of a random variable 1. Expectation of a function of a random variable 2. We know E(X) = x xp(x)

More information

S t d with probability (1 p), where

S t d with probability (1 p), where Stochastic Calculus Week 3 Topics: Towards Black-Scholes Stochastic Processes Brownian Motion Conditional Expectations Continuous-time Martingales Towards Black Scholes Suppose again that S t+δt equals

More information

Mean-Variance Portfolio Choice in Excel

Mean-Variance Portfolio Choice in Excel Mean-Variance Portfolio Choice in Excel Prof. Manuela Pedio 20550 Quantitative Methods for Finance August 2018 Let s suppose you can only invest in two assets: a (US) stock index (here represented by the

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information