2.1 Rademacher Calculus... 3

Size: px
Start display at page:

Download "2.1 Rademacher Calculus... 3"

Transcription

1 COS 598E: Unsupervsed Learnng Week 2 Lecturer: Elad Hazan Scrbe: Kran Vodrahall Contents 1 Introducton 1 2 Non-generatve pproach Rademacher Calculus Spectral utoencoders 4 1 Introducton What I want to do today s frst contnue wth some theoretcal observatons about unsupervsed learnng, and prove generalzaton bounds (non-generatve) for unsupervsed learnng. Ths s as far as I can tell the only way to gve generalzaton error. Last tme we talked about unsupervsed learnng and phlosophy, and we talked about a specfc defnton. We wll come up wth convex relaxatons and effcent algorthms for solvng the problem n ths model. 2 Non-generatve pproach Consder a hypothess class composed of two functons (f, g) H, one s a decoder and the other s an encoder. We measure reconstructon error by E x D [x g f(x)]. If ths value s zero, we ddn t lose any nformaton. We have D s an unknown dstrbuton, lke n the PC model. famly of encoder-decoders s learnable f we can gve a bound on the number of examples requred to get generalzaton error whch s small. We defne the loss L D (h) = E x D [ x h(x) ] (1) Just lke n PC learnng, we take a sample S D m where S = {x 1,, x m }, and we defne sample loss L S (h) = E x S [ x h(x) ]. It s learnable f there exsts an (effcent) algorthm where after m(ɛ, δ) samples t fnds h s.t. wth probablty 1 δ, L D ( h) L D (h )+ɛ. Ths vew looks at learnng as compresson wth low reconstructon error. We can sometmes add a term to the loss dependent on the number of bts requred to express f(x). Now, how do we analyze PC n ths framework? What knd of guarantees can we hope to prove for PC n terms of generalzaton? Theorem 2.1. PC s learnable wth sample complexty d m. Ths d can be mproved to k (k-pc), x R d, but we won t show ths. Therefore, m(ɛ, δ) d ɛ 2. We omt the 1/δ. Proof. Last tme, we defned Rademacher complexty. 1

2 Defnton 2.2. Rademacher complexty. Consder a famly of mappngs F : X R. The Rademacher complexty s R S (F ) = E σ1,,σ m[sup 1 m m {+1, 1} σ f(x )] (2) f F m and =1 R m [F ] = E S =m [R S (F )] (3) If H : X X, loss l : X R, F = H l, then h H, log 1/δ L S (h) L D (h) + 2R S (H) + O( m ) (4) wth probablty 1 δ. Now how does ths help us? Example 2.3. Consder hypothess class H = {w w T x} of lnear separators. Suppose we bound w 2 B wth x 2 r (note that ths mples that the dstrbuton s bounded by the sphere). Then we clam that Theorem 2.4. R S (H) rb m The man thng that wll gve us somethng new s lookng at polynomal kernels rather than lnear kernels later on. Proof. mr S (H) = E σ1,,σ m [sup σ w T x ] w ( = E σ1,,σ m [sup w T σ x )] w E σ1,,σ m [sup w 2 σ x 2 ][ by Cauchy-Schwarz] w B E σ1,,σ m [ σ x ] ( B E[ 1/2 σ x ]) 2 [ by Jensen] = B E σ1,,σ m [ σ σ j x T x j],j (5) Note that lne 6 happens = B x 2 B mr 2 Note that n ths course, we care about real-valued functons, not 0 1 loss as much (n that case t s bounded by VC-dmenson whch s bounded by dmenson of the space). To reterate, n the case that the numbers become large, the loss can also become large t makes sense you need more samples. But f you have a bound on the sze, than the loss becomes manageable as well. 2

3 2.1 Rademacher Calculus Ths wll help us get generalzaton bounds beyond 0 1 losses. Let R m. Thnk of each a as a vector whch has the losses of all x : [l(h(x 1 )), l(h(x 2 )),, l(h(x m ))]. Defne Defnton 2.5. R() = E σ1,,σ m [sup α a ] (6) a Now consder what happens f you take R(c 0 +c 1 )? If you just add a constant, nothng changes n expectaton (±1 n expectaton s 0). However, multplyng mght do somethng: R(c 0 + c 1 ) = c 0 R(), assumng that σ a s non-negatve, or that for every postve a j there s a negatve a j (symmetrc). Lemma 2.6. Talagrand s Lemma. Let l : R R whch s ρ-lpschtz ( l (x) l (y) ρ(x y)). Ths s satsfed f l s dfferentable and ts dervatve s bounded by ρ. But the Lpschtz property s more general, and doesn t requre dfferentablty, only contnuty. Then, let l () = {(l (a 1 ), l (a 2 ),, l (a m )) a }. Consder the example l (w T x) = (w T x y) 2. Then, we have that R(l ()) ρr() (7) Note that l need not be convex! Ths s a useful property to know to get generalzaton error bounds. Now we wll prove generalzaton error bounds for PC. What s the hypothess class H for PC? It s the set of all pars (f, g) ndexed by such that f (x) = x, and g (y) = 1 y, wth R k d. We have l(h, x) = x 1 x 2 = x g f(x) 2 2, the reconstructon error. Now the queston we want to ask s how many examples do we need to see before we can characterze the reconstructon error of ths class? We also assume x 2 1 for smplcty. Theorem 2.7. R S (Hk P C )?. Proof. m R S (Hk P C ) = E σ s[sup = E σ [sup = E σ [sup E σ [sup Tr m σ x 1 x 2 ] =1 ( σ x T I 1 ) 2 x ] σ Tr( ( I 1 ) 2 x x T )] ( (I 1 ) ) 2 σ x x T ] (8) 3

4 Then note that, B = T rb op B so by Holder s nequalty (any prmal dual norm par). Here we take op = Frobenus and as the Frobenus norm (ths s just Cauchy- Schwarz). E σ [sup I 1 F σ x x T F ] de σ [ σ x x T ] ( ) 2] de σ [ σ x x T 1/2 = d E σ [ σ σ j x, x j 2 ],j (9) = d x 2 = md You can optmze the norm pars correctly to get k nstead of d. Now for all L S (h ) L D (h ) 2R m (Hk P C log 1/δ ) +. ɛ Now why s ths nterestng? We ve proved somethng stronger than generalzaton bound; we have agnostc learnng. You re competng wth best lnear encodng for ths data (even f your data s not from the subspace). 3 Spectral utoencoders In PC, we have x x. Instead, let s consder a polynomal verson of ths: x [p 1 (x), p 2 (x),, p k (x)]. Quadratc would mean take x 2 = [x 1,, x d, x 1 x 2,, x x j, ]. Then R k (d2 /2+d). Now how do you defne an unsupervsed learnng problem that can learn a manfold of square degree? We can try to learn the best encodng-decodng wth mnmum reconstructon error. Let s consder the hypothess class parametrzed by matrces H = {, f (x) = x 2, g(y) = v max ( 1 y)}. Even more natural would be to pck g(y) = argmn x R d x 2 y 2 2. There are many thngs you can thnk of, and these gve rse to nonconvex optmzaton problems whch are hard to globally optmze. Note that before you take the top egenvector, you have to do a reshapng operaton on 1 y n order to get a matrx. (ntuton here s that the matrx form of x 2 s xx T, whch has top egenvector x. We also have a lnear map n ths case whch smears thngs, t turns out you can prove that ths approach s robust to nose). Theorem 3.1. H s learnable wth sample complexty dk ɛ 2 usng a smlar approach. The man queston s can we come up wth effcent algorthms to solve these problems. Ths s where convex relaxaton can help. Theorem 3.2. H s effcently learnable wth sample complexty O( d2 k ɛ 4 ). Ths theorem doesn t contradct the NP-hardness of the problem, snce we re allowed to generate a hypothess whch does not come from H. 4

5 The roadmap for provng ths theorem s (1): Gve class Ĥ whch contans H, whch has sample complexty n the form of O(d 2 k/ɛ 4 ). Then, (2) effcently learn Ĥ. Let s defne H = {f, g, f(x) = x, g(y) = By} where we don t restrct B to be the nverse (relaxng the set). Our loss wll be l(h, x) = x 2 Bx 2 2 spectral. Ths loss functon s a relaxaton of our prevous loss. It turns out that x v max ( 1 x 2 ) 2 2 l(h, x) (10) so f we mnmze l(h, x), we mnmze the other too. Now to get ths effcent thng, we have to prove sample complexty for Ĥ you could do Rademacher, but that s knd of non-ntutve. However n ths case, we can get smultaneous generalzaton and optmzaton, va regret mnmzaton. We have Ĥ, a set of hypotheses h, and loss functons l x(h) = x 2 Bx Now, we are gong to do a further relaxaton and call h B = h D, where D = B R d2 d 2. nd the way we can relax s say D k (bound the trace norm). We have l(h 0 ) s convex n D. {D} such that Tr(D) k s also convex. Both condtons must hold for dong smultaneous optmzaton and generalzaton. We defne an algorthm: 1. 0 > D 1, for t = 1, 2, 3,, T, do: 2. sample x D, denote l x (D) = l t (D). ] 3. update: D t+1 = Π K [D t 1 t l t (D t ) 4. return D = 1 T T t=1 D t, the average over all teratons. where Π s the projecton operaton wth respect to Eucldean norm. Theorem 3.3. Onlne Gradent Descent. lt (D t ) mn lt (D t ) 2d2 κ (11) D K T where κ s the rank of the matrx and d s the dmenson. s a corollary, Theorem 3.4. E[L G ( D)] mn L G(h G ) + 2d2 κ (12) h G H T 5

6 Proof. E[L G ( D)] = E x G [l x ( D)] (13) = E x G [l x ( 1 T Dt )] (14) E x [ 1 T lt (D t )] (15) E x [l x (h )] + 2d2 κ T (16) = mn L G(h ) + 2d2 κ (17) h H T snce loss functons are convex, we can apply Jensen. Lne 4 uses the OGD theorem. Ths holds for any h snce regert s worst-case, whch s why we get the mnmum h over H. Every tme you choose example x, t s ndependent of the D t. You choose x from dstrbuton. So you have to wrte a summaton of condtonal expectatons and then do a martngale analyss, but what we have wrtten s precse because t comes out to the same thng. So far, we have dscussed one approach to unsupervsed learnng: compresson based, and we ve argued why t makes sense, and how you can get generalzaton error bounds from these defntons whch are non-standard for unsupervsed learnng. We saw how to get these from Rademacher complexty, and dscussed how to do t for PC and spectral autoencoders and generalzaton by optmzaton. One of the strong ponts of ths framework s that you can use convex relaxaton. Ths has been done for other classes of unsupervsed learnng, lke dctonary learnng. 6

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019 5-45/65: Desgn & Analyss of Algorthms January, 09 Lecture #3: Amortzed Analyss last changed: January 8, 09 Introducton In ths lecture we dscuss a useful form of analyss, called amortzed analyss, for problems

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #21 Scrbe: Lawrence Dao Aprl 23, 2013 1 On-Lne Log Loss To recap the end of the last lecture, we have the followng on-lne problem wth N

More information

Fast Laplacian Solvers by Sparsification

Fast Laplacian Solvers by Sparsification Spectral Graph Theory Lecture 19 Fast Laplacan Solvers by Sparsfcaton Danel A. Spelman November 9, 2015 Dsclamer These notes are not necessarly an accurate representaton of what happened n class. The notes

More information

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem.

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem. Topcs on the Border of Economcs and Computaton December 11, 2005 Lecturer: Noam Nsan Lecture 7 Scrbe: Yoram Bachrach 1 Nash s Theorem We begn by provng Nash s Theorem about the exstance of a mxed strategy

More information

Appendix - Normally Distributed Admissible Choices are Optimal

Appendix - Normally Distributed Admissible Choices are Optimal Appendx - Normally Dstrbuted Admssble Choces are Optmal James N. Bodurtha, Jr. McDonough School of Busness Georgetown Unversty and Q Shen Stafford Partners Aprl 994 latest revson September 00 Abstract

More information

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic Appendx for Solvng Asset Prcng Models when the Prce-Dvdend Functon s Analytc Ovdu L. Caln Yu Chen Thomas F. Cosmano and Alex A. Hmonas January 3, 5 Ths appendx provdes proofs of some results stated n our

More information

CS 286r: Matching and Market Design Lecture 2 Combinatorial Markets, Walrasian Equilibrium, Tâtonnement

CS 286r: Matching and Market Design Lecture 2 Combinatorial Markets, Walrasian Equilibrium, Tâtonnement CS 286r: Matchng and Market Desgn Lecture 2 Combnatoral Markets, Walrasan Equlbrum, Tâtonnement Matchng and Money Recall: Last tme we descrbed the Hungaran Method for computng a maxmumweght bpartte matchng.

More information

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers II. Random Varables Random varables operate n much the same way as the outcomes or events n some arbtrary sample space the dstncton s that random varables are smply outcomes that are represented numercally.

More information

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2 Games and Decsons Part I: Basc Theorems Jane Yuxn Wang Contents 1 Introducton 1 2 Two-player Games 2 2.1 Zero-sum Games................................ 3 2.1.1 Pure Strateges.............................

More information

3: Central Limit Theorem, Systematic Errors

3: Central Limit Theorem, Systematic Errors 3: Central Lmt Theorem, Systematc Errors 1 Errors 1.1 Central Lmt Theorem Ths theorem s of prme mportance when measurng physcal quanttes because usually the mperfectons n the measurements are due to several

More information

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002 TO5 Networng: Theory & undamentals nal xamnaton Professor Yanns. orls prl, Problem [ ponts]: onsder a rng networ wth nodes,,,. In ths networ, a customer that completes servce at node exts the networ wth

More information

Foundations of Machine Learning II TP1: Entropy

Foundations of Machine Learning II TP1: Entropy Foundatons of Machne Learnng II TP1: Entropy Gullaume Charpat (Teacher) & Gaétan Marceau Caron (Scrbe) Problem 1 (Gbbs nequalty). Let p and q two probablty measures over a fnte alphabet X. Prove that KL(p

More information

Equilibrium in Prediction Markets with Buyers and Sellers

Equilibrium in Prediction Markets with Buyers and Sellers Equlbrum n Predcton Markets wth Buyers and Sellers Shpra Agrawal Nmrod Megddo Benamn Armbruster Abstract Predcton markets wth buyers and sellers of contracts on multple outcomes are shown to have unque

More information

Production and Supply Chain Management Logistics. Paolo Detti Department of Information Engeneering and Mathematical Sciences University of Siena

Production and Supply Chain Management Logistics. Paolo Detti Department of Information Engeneering and Mathematical Sciences University of Siena Producton and Supply Chan Management Logstcs Paolo Dett Department of Informaton Engeneerng and Mathematcal Scences Unversty of Sena Convergence and complexty of the algorthm Convergence of the algorthm

More information

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression Supplementary materal for Non-conjugate Varatonal Message Passng for Multnomal and Bnary Regresson October 9, 011 1 Alternatve dervaton We wll focus on a partcular factor f a and varable x, wth the am

More information

Scribe: Chris Berlind Date: Feb 1, 2010

Scribe: Chris Berlind Date: Feb 1, 2010 CS/CNS/EE 253: Advanced Topcs n Machne Learnng Topc: Dealng wth Partal Feedback #2 Lecturer: Danel Golovn Scrbe: Chrs Berlnd Date: Feb 1, 2010 8.1 Revew In the prevous lecture we began lookng at algorthms

More information

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics Unversty of Illnos Fall 08 ECE 586GT: Problem Set : Problems and Solutons Unqueness of Nash equlbra, zero sum games, evolutonary dynamcs Due: Tuesday, Sept. 5, at begnnng of class Readng: Course notes,

More information

Elements of Economic Analysis II Lecture VI: Industry Supply

Elements of Economic Analysis II Lecture VI: Industry Supply Elements of Economc Analyss II Lecture VI: Industry Supply Ka Hao Yang 10/12/2017 In the prevous lecture, we analyzed the frm s supply decson usng a set of smple graphcal analyses. In fact, the dscusson

More information

MgtOp 215 Chapter 13 Dr. Ahn

MgtOp 215 Chapter 13 Dr. Ahn MgtOp 5 Chapter 3 Dr Ahn Consder two random varables X and Y wth,,, In order to study the relatonshp between the two random varables, we need a numercal measure that descrbes the relatonshp The covarance

More information

Problem Set 6 Finance 1,

Problem Set 6 Finance 1, Carnege Mellon Unversty Graduate School of Industral Admnstraton Chrs Telmer Wnter 2006 Problem Set 6 Fnance, 47-720. (representatve agent constructon) Consder the followng two-perod, two-agent economy.

More information

Random Variables. b 2.

Random Variables. b 2. Random Varables Generally the object of an nvestgators nterest s not necessarly the acton n the sample space but rather some functon of t. Techncally a real valued functon or mappng whose doman s the sample

More information

Parallel Prefix addition

Parallel Prefix addition Marcelo Kryger Sudent ID 015629850 Parallel Prefx addton The parallel prefx adder presented next, performs the addton of two bnary numbers n tme of complexty O(log n) and lnear cost O(n). Lets notce the

More information

Jeffrey Ely. October 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Jeffrey Ely. October 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. October 7, 2012 Ths work s lcensed under the Creatve Commons Attrbuton-NonCommercal-ShareAlke 3.0 Lcense. Recap We saw last tme that any standard of socal welfare s problematc n a precse sense. If we want

More information

OPERATIONS RESEARCH. Game Theory

OPERATIONS RESEARCH. Game Theory OPERATIONS RESEARCH Chapter 2 Game Theory Prof. Bbhas C. Gr Department of Mathematcs Jadavpur Unversty Kolkata, Inda Emal: bcgr.umath@gmal.com 1.0 Introducton Game theory was developed for decson makng

More information

S yi a bx i cx yi a bx i cx 2 i =0. yi a bx i cx 2 i xi =0. yi a bx i cx 2 i x

S yi a bx i cx yi a bx i cx 2 i =0. yi a bx i cx 2 i xi =0. yi a bx i cx 2 i x LEAST-SQUARES FIT (Chapter 8) Ft the best straght lne (parabola, etc.) to a gven set of ponts. Ths wll be done by mnmzng the sum of squares of the vertcal dstances (called resduals) from the ponts to the

More information

Problems to be discussed at the 5 th seminar Suggested solutions

Problems to be discussed at the 5 th seminar Suggested solutions ECON4260 Behavoral Economcs Problems to be dscussed at the 5 th semnar Suggested solutons Problem 1 a) Consder an ultmatum game n whch the proposer gets, ntally, 100 NOK. Assume that both the proposer

More information

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode.

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode. Part 4 Measures of Spread IQR and Devaton In Part we learned how the three measures of center offer dfferent ways of provdng us wth a sngle representatve value for a data set. However, consder the followng

More information

Price and Quantity Competition Revisited. Abstract

Price and Quantity Competition Revisited. Abstract rce and uantty Competton Revsted X. Henry Wang Unversty of Mssour - Columba Abstract By enlargng the parameter space orgnally consdered by Sngh and Vves (984 to allow for a wder range of cost asymmetry,

More information

MULTIPLE CURVE CONSTRUCTION

MULTIPLE CURVE CONSTRUCTION MULTIPLE CURVE CONSTRUCTION RICHARD WHITE 1. Introducton In the post-credt-crunch world, swaps are generally collateralzed under a ISDA Master Agreement Andersen and Pterbarg p266, wth collateral rates

More information

4.4 Doob s inequalities

4.4 Doob s inequalities 34 CHAPTER 4. MARTINGALES 4.4 Doob s nequaltes The frst nterestng consequences of the optonal stoppng theorems are Doob s nequaltes. If M n s a martngale, denote M n =max applen M. Theorem 4.8 If M n s

More information

Maximum Likelihood Estimation of Isotonic Normal Means with Unknown Variances*

Maximum Likelihood Estimation of Isotonic Normal Means with Unknown Variances* Journal of Multvarate Analyss 64, 183195 (1998) Artcle No. MV971717 Maxmum Lelhood Estmaton of Isotonc Normal Means wth Unnown Varances* Nng-Zhong Sh and Hua Jang Northeast Normal Unversty, Changchun,Chna

More information

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 9

Elton, Gruber, Brown, and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 9 Elton, Gruber, Brown, and Goetzmann Modern Portfolo Theory and Investment Analyss, 7th Edton Solutons to Text Problems: Chapter 9 Chapter 9: Problem In the table below, gven that the rskless rate equals

More information

Multifactor Term Structure Models

Multifactor Term Structure Models 1 Multfactor Term Structure Models A. Lmtatons of One-Factor Models 1. Returns on bonds of all maturtes are perfectly correlated. 2. Term structure (and prces of every other dervatves) are unquely determned

More information

The convolution computation for Perfectly Matched Boundary Layer algorithm in finite differences

The convolution computation for Perfectly Matched Boundary Layer algorithm in finite differences The convoluton computaton for Perfectly Matched Boundary Layer algorthm n fnte dfferences Herman Jaramllo May 10, 2016 1 Introducton Ths s an exercse to help on the understandng on some mportant ssues

More information

The Hiring Problem. Informationsteknologi. Institutionen för informationsteknologi

The Hiring Problem. Informationsteknologi. Institutionen för informationsteknologi The Hrng Problem An agency gves you a lst of n persons You ntervew them one-by-one After each ntervew, you must mmedately decde f ths canddate should be hred You can change your mnd f a better one comes

More information

Tests for Two Ordered Categorical Variables

Tests for Two Ordered Categorical Variables Chapter 253 Tests for Two Ordered Categorcal Varables Introducton Ths module computes power and sample sze for tests of ordered categorcal data such as Lkert scale data. Assumng proportonal odds, such

More information

- contrast so-called first-best outcome of Lindahl equilibrium with case of private provision through voluntary contributions of households

- contrast so-called first-best outcome of Lindahl equilibrium with case of private provision through voluntary contributions of households Prvate Provson - contrast so-called frst-best outcome of Lndahl equlbrum wth case of prvate provson through voluntary contrbutons of households - need to make an assumpton about how each household expects

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 0-80 /02-70 Computatonal Genomcs Normalzaton Gene Expresson Analyss Model Computatonal nformaton fuson Bologcal regulatory networks Pattern Recognton Data Analyss clusterng, classfcaton normalzaton, mss.

More information

Option pricing and numéraires

Option pricing and numéraires Opton prcng and numérares Daro Trevsan Unverstà degl Stud d Psa San Mnato - 15 September 2016 Overvew 1 What s a numerare? 2 Arrow-Debreu model Change of numerare change of measure 3 Contnuous tme Self-fnancng

More information

0.1 Gradient descent for convex functions: univariate case

0.1 Gradient descent for convex functions: univariate case prnceton unv. F 16 cos 51: Advanced Algorthm Desgn Lecture 14: Gong wth the slope: offlne, onlne, and randomly Lecturer: Sanjeev Arora Scrbe:Sanjeev Arora hs lecture s about gradent descent, a popular

More information

Utilitarianism. Jeffrey Ely. June 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Utilitarianism. Jeffrey Ely. June 7, This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Utltaransm June 7, 2009 Ths work s lcensed under the Creatve Commons Attrbuton-NonCommercal-ShareAlke 3.0 Lcense. Utltaransm Why Utltaransm? We saw last tme that any standard of socal welfare s problematc

More information

Introduction to game theory

Introduction to game theory Introducton to game theory Lectures n game theory ECON5210, Sprng 2009, Part 1 17.12.2008 G.B. Ashem, ECON5210-1 1 Overvew over lectures 1. Introducton to game theory 2. Modelng nteractve knowledge; equlbrum

More information

Topics on the Border of Economics and Computation November 6, Lecture 2

Topics on the Border of Economics and Computation November 6, Lecture 2 Topcs on the Border of Economcs and Computaton November 6, 2005 Lecturer: Noam Nsan Lecture 2 Scrbe: Arel Procacca 1 Introducton Last week we dscussed the bascs of zero-sum games n strategc form. We characterzed

More information

Tests for Two Correlations

Tests for Two Correlations PASS Sample Sze Software Chapter 805 Tests for Two Correlatons Introducton The correlaton coeffcent (or correlaton), ρ, s a popular parameter for descrbng the strength of the assocaton between two varables.

More information

Chapter 5 Student Lecture Notes 5-1

Chapter 5 Student Lecture Notes 5-1 Chapter 5 Student Lecture Notes 5-1 Basc Busness Statstcs (9 th Edton) Chapter 5 Some Important Dscrete Probablty Dstrbutons 004 Prentce-Hall, Inc. Chap 5-1 Chapter Topcs The Probablty Dstrbuton of a Dscrete

More information

Still Simpler Way of Introducing Interior-Point method for Linear Programming

Still Simpler Way of Introducing Interior-Point method for Linear Programming Stll Smpler Way of Introducng Interor-Pont method for Lnear Programmng Sanjeev Saxena Dept. of Computer Scence and Engneerng, Indan Insttute of Technology, Kanpur, INDIA-08 06 October 9, 05 Abstract Lnear

More information

Chapter 3 Student Lecture Notes 3-1

Chapter 3 Student Lecture Notes 3-1 Chapter 3 Student Lecture otes 3-1 Busness Statstcs: A Decson-Makng Approach 6 th Edton Chapter 3 Descrbng Data Usng umercal Measures 005 Prentce-Hall, Inc. Chap 3-1 Chapter Goals After completng ths chapter,

More information

1 A Primer on Linear Models. 2 Chapter 1 corrections. 3 Chapter 2 corrections. 4 Chapter 3 corrections. 1.1 Corrections 23 May 2015

1 A Primer on Linear Models. 2 Chapter 1 corrections. 3 Chapter 2 corrections. 4 Chapter 3 corrections. 1.1 Corrections 23 May 2015 A Prmer on Lnear Models. Correctons 23 May 205 2 Chapter correctons Fx page: 9 lne -7 denomnator ( ρ 2 ) s mssng, should read Cov(e t, e s ) = V ar(a t )/( ρ 2 ) Fx page: lne -5 sgn needs changng: cos(a

More information

4. Greek Letters, Value-at-Risk

4. Greek Letters, Value-at-Risk 4 Greek Letters, Value-at-Rsk 4 Value-at-Rsk (Hull s, Chapter 8) Math443 W08, HM Zhu Outlne (Hull, Chap 8) What s Value at Rsk (VaR)? Hstorcal smulatons Monte Carlo smulatons Model based approach Varance-covarance

More information

A Unified Distributed Algorithm for Non-Games Non-cooperative, Non-convex, and Non-differentiable. Jong-Shi Pang and Meisam Razaviyayn.

A Unified Distributed Algorithm for Non-Games Non-cooperative, Non-convex, and Non-differentiable. Jong-Shi Pang and Meisam Razaviyayn. A Unfed Dstrbuted Algorthm for Non-Games Non-cooperatve, Non-convex, and Non-dfferentable Jong-Sh Pang and Mesam Razavyayn presented at Workshop on Optmzaton for Modern Computaton Pekng Unversty, Bejng,

More information

Data Mining Linear and Logistic Regression

Data Mining Linear and Logistic Regression 07/02/207 Data Mnng Lnear and Logstc Regresson Mchael L of 26 Regresson In statstcal modellng, regresson analyss s a statstcal process for estmatng the relatonshps among varables. Regresson models are

More information

CS54701: Information Retrieval

CS54701: Information Retrieval CS54701: Informaton Retreval Federated Search 22 March 2016 Prof. Chrs Clfton Federated Search Outlne Introducton to federated search Man research problems Resource Representaton Resource Selecton Results

More information

arxiv: v1 [math.nt] 29 Oct 2015

arxiv: v1 [math.nt] 29 Oct 2015 A DIGITAL BINOMIAL THEOREM FOR SHEFFER SEQUENCES TOUFIK MANSOUR AND HIEU D. NGUYEN arxv:1510.08529v1 [math.nt] 29 Oct 2015 Abstract. We extend the dgtal bnomal theorem to Sheffer polynomal sequences by

More information

Quiz on Deterministic part of course October 22, 2002

Quiz on Deterministic part of course October 22, 2002 Engneerng ystems Analyss for Desgn Quz on Determnstc part of course October 22, 2002 Ths s a closed book exercse. You may use calculators Grade Tables There are 90 ponts possble for the regular test, or

More information

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4 Elton, Gruber, Brown and Goetzmann Modern ortfolo Theory and Investment Analyss, 7th Edton Solutons to Text roblems: Chapter 4 Chapter 4: roblem 1 A. Expected return s the sum of each outcome tmes ts assocated

More information

Numerical Analysis ECIV 3306 Chapter 6

Numerical Analysis ECIV 3306 Chapter 6 The Islamc Unversty o Gaza Faculty o Engneerng Cvl Engneerng Department Numercal Analyss ECIV 3306 Chapter 6 Open Methods & System o Non-lnear Eqs Assocate Pro. Mazen Abualtaye Cvl Engneerng Department,

More information

Applications of Myerson s Lemma

Applications of Myerson s Lemma Applcatons of Myerson s Lemma Professor Greenwald 28-2-7 We apply Myerson s lemma to solve the sngle-good aucton, and the generalzaton n whch there are k dentcal copes of the good. Our objectve s welfare

More information

On the Moments of the Traces of Unitary and Orthogonal Random Matrices

On the Moments of the Traces of Unitary and Orthogonal Random Matrices Proceedngs of Insttute of Mathematcs of NAS of Ukrane 2004 Vol. 50 Part 3 1207 1213 On the Moments of the Traces of Untary and Orthogonal Random Matrces Vladmr VASILCHU B. Verkn Insttute for Low Temperature

More information

Economic Design of Short-Run CSP-1 Plan Under Linear Inspection Cost

Economic Design of Short-Run CSP-1 Plan Under Linear Inspection Cost Tamkang Journal of Scence and Engneerng, Vol. 9, No 1, pp. 19 23 (2006) 19 Economc Desgn of Short-Run CSP-1 Plan Under Lnear Inspecton Cost Chung-Ho Chen 1 * and Chao-Yu Chou 2 1 Department of Industral

More information

c slope = -(1+i)/(1+π 2 ) MRS (between consumption in consecutive time periods) price ratio (across consecutive time periods)

c slope = -(1+i)/(1+π 2 ) MRS (between consumption in consecutive time periods) price ratio (across consecutive time periods) CONSUMPTION-SAVINGS FRAMEWORK (CONTINUED) SEPTEMBER 24, 2013 The Graphcs of the Consumpton-Savngs Model CONSUMER OPTIMIZATION Consumer s decson problem: maxmze lfetme utlty subject to lfetme budget constrant

More information

Doubly Random Parallel Stochastic Algorithms for Large Scale Learning

Doubly Random Parallel Stochastic Algorithms for Large Scale Learning 000 00 00 003 004 005 006 007 008 009 00 0 0 03 04 05 06 07 08 09 00 0 0 03 04 05 06 07 08 09 030 03 03 033 034 035 036 037 038 039 040 04 04 043 044 045 046 047 048 049 050 05 05 053 Doubly Random Parallel

More information

2) In the medium-run/long-run, a decrease in the budget deficit will produce:

2) In the medium-run/long-run, a decrease in the budget deficit will produce: 4.02 Quz 2 Solutons Fall 2004 Multple-Choce Questons ) Consder the wage-settng and prce-settng equatons we studed n class. Suppose the markup, µ, equals 0.25, and F(u,z) = -u. What s the natural rate of

More information

Introduction to PGMs: Discrete Variables. Sargur Srihari

Introduction to PGMs: Discrete Variables. Sargur Srihari Introducton to : Dscrete Varables Sargur srhar@cedar.buffalo.edu Topcs. What are graphcal models (or ) 2. Use of Engneerng and AI 3. Drectonalty n graphs 4. Bayesan Networks 5. Generatve Models and Samplng

More information

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics Lmted Dependent Varable Models: Tobt an Plla N 1 CDS Mphl Econometrcs Introducton Lmted Dependent Varable Models: Truncaton and Censorng Maddala, G. 1983. Lmted Dependent and Qualtatve Varables n Econometrcs.

More information

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique.

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique. 1.7.4 Mode Mode s the value whch occurs most frequency. The mode may not exst, and even f t does, t may not be unque. For ungrouped data, we smply count the largest frequency of the gven value. If all

More information

How to Share a Secret, Infinitely

How to Share a Secret, Infinitely How to Share a Secret, Infntely Ilan Komargodsk Mon Naor Eylon Yogev Abstract Secret sharng schemes allow a dealer to dstrbute a secret pece of nformaton among several partes such that only qualfed subsets

More information

Linear Combinations of Random Variables and Sampling (100 points)

Linear Combinations of Random Variables and Sampling (100 points) Economcs 30330: Statstcs for Economcs Problem Set 6 Unversty of Notre Dame Instructor: Julo Garín Sprng 2012 Lnear Combnatons of Random Varables and Samplng 100 ponts 1. Four-part problem. Go get some

More information

A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM

A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM Yugoslav Journal of Operatons Research Vol 19 (2009), Number 1, 157-170 DOI:10.2298/YUJOR0901157G A DUAL EXTERIOR POINT SIMPLEX TYPE ALGORITHM FOR THE MINIMUM COST NETWORK FLOW PROBLEM George GERANIS Konstantnos

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE VI LECTURE - 4 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shalabh Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur An example to motvate

More information

Homework 9: due Monday, 27 October, 2008

Homework 9: due Monday, 27 October, 2008 PROBLEM ONE Homework 9: due Monday, 7 October, 008. (Exercses from the book, 6 th edton, 6.6, -3.) Determne the number of dstnct orderngs of the letters gven: (a) GUIDE (b) SCHOOL (c) SALESPERSONS. (Exercses

More information

Oracle inequalities for computationally budgeted model selection

Oracle inequalities for computationally budgeted model selection Oracle nequaltes for computatonally budgeted model selecton Alekh Agarwal John C. Duch Unversty of Calforna, Berkeley alekh,jduch}@cs.berkeley.edu Peter L. Bartlett QUT and UC Berkeley bartlett@cs.berkeley.edu

More information

arxiv: v2 [math.co] 6 Apr 2016

arxiv: v2 [math.co] 6 Apr 2016 On the number of equvalence classes of nvertble Boolean functons under acton of permutaton of varables on doman and range arxv:1603.04386v2 [math.co] 6 Apr 2016 Marko Carć and Modrag Žvkovć Abstract. Let

More information

Understanding Annuities. Some Algebraic Terminology.

Understanding Annuities. Some Algebraic Terminology. Understandng Annutes Ma 162 Sprng 2010 Ma 162 Sprng 2010 March 22, 2010 Some Algebrac Termnology We recall some terms and calculatons from elementary algebra A fnte sequence of numbers s a functon of natural

More information

Random Variables. 8.1 What is a Random Variable? Announcements: Chapter 8

Random Variables. 8.1 What is a Random Variable? Announcements: Chapter 8 Announcements: Quz starts after class today, ends Monday Last chance to take probablty survey ends Sunday mornng. Next few lectures: Today, Sectons 8.1 to 8. Monday, Secton 7.7 and extra materal Wed, Secton

More information

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x Whch of the followng provdes the most reasonable approxmaton to the least squares regresson lne? (a) y=50+10x (b) Y=50+x (c) Y=10+50x (d) Y=1+50x (e) Y=10+x In smple lnear regresson the model that s begn

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

PASS Sample Size Software. :log

PASS Sample Size Software. :log PASS Sample Sze Software Chapter 70 Probt Analyss Introducton Probt and lot analyss may be used for comparatve LD 50 studes for testn the effcacy of drus desned to prevent lethalty. Ths proram module presents

More information

Test Problems for Large Scale Nonsmooth Minimization

Test Problems for Large Scale Nonsmooth Minimization Reports of the Department of Mathematcal Informaton Technology Seres B. Scentfc Computng No. B. 4/007 Test Problems for Large Scale Nonsmooth Mnmzaton Napsu Karmtsa Unversty of Jyväskylä Department of

More information

Statistical Cost Sharing

Statistical Cost Sharing Statstcal Cost Sharng Erc Balkansk Harvard Unversty ercbalkansk@g.harvard.edu Umar Syed Google NYC usyed@google.com Serge Vasslvtsk Google NYC sergev@google.com Abstract We study the cost sharng problem

More information

In this appendix, we present some theoretical aspects of game theory that would be followed by players in a restructured energy market.

In this appendix, we present some theoretical aspects of game theory that would be followed by players in a restructured energy market. Market Operatons n Electrc Power Systes: Forecastng, Schedulng, and Rsk Manageentg Mohaad Shahdehpour, Hat Yan, Zuy L Copyrght 2002 John Wley & Sons, Inc. ISBNs: 0-47-44337-9 (Hardback); 0-47-2242-X (Electronc)

More information

Efficient Project Portfolio as a Tool for Enterprise Risk Management

Efficient Project Portfolio as a Tool for Enterprise Risk Management Effcent Proect Portfolo as a Tool for Enterprse Rsk Management Valentn O. Nkonov Ural State Techncal Unversty Growth Traectory Consultng Company Enterprse Rsk Management Symposum Socety of Actuares Chcago,

More information

Robust Boosting and its Relation to Bagging

Robust Boosting and its Relation to Bagging Robust Boostng and ts Relaton to Baggng Saharon Rosset IBM T.J. Watson Research Center P. O. Box 218 Yorktown Heghts, NY 10598 srosset@us.bm.com ABSTRACT Several authors have suggested vewng boostng as

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) May 17, 2016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston 2 A B C Blank Queston

More information

EDC Introduction

EDC Introduction .0 Introducton EDC3 In the last set of notes (EDC), we saw how to use penalty factors n solvng the EDC problem wth losses. In ths set of notes, we want to address two closely related ssues. What are, exactly,

More information

CS 541 Algorithms and Programs. Exam 1 Solutions

CS 541 Algorithms and Programs. Exam 1 Solutions CS 5 Algortms and Programs Exam Solutons Jonatan Turner 9/5/0 Be neat and concse, ut complete.. (5 ponts) An ncomplete nstance of te wgrap data structure s sown elow. Fll n te mssng felds for te adjacency

More information

Jean-Paul Murara, Västeras, 26-April Mälardalen University, Sweden. Pricing EO under 2-dim. B S PDE by. using the Crank-Nicolson Method

Jean-Paul Murara, Västeras, 26-April Mälardalen University, Sweden. Pricing EO under 2-dim. B S PDE by. using the Crank-Nicolson Method Prcng EO under Mälardalen Unversty, Sweden Västeras, 26-Aprl-2017 1 / 15 Outlne 1 2 3 2 / 15 Optons - contracts that gve to the holder the rght but not the oblgaton to buy/sell an asset sometmes n the

More information

Teaching Note on Factor Model with a View --- A tutorial. This version: May 15, Prepared by Zhi Da *

Teaching Note on Factor Model with a View --- A tutorial. This version: May 15, Prepared by Zhi Da * Copyrght by Zh Da and Rav Jagannathan Teachng Note on For Model th a Ve --- A tutoral Ths verson: May 5, 2005 Prepared by Zh Da * Ths tutoral demonstrates ho to ncorporate economc ves n optmal asset allocaton

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part B

Chapter 3 Descriptive Statistics: Numerical Measures Part B Sldes Prepared by JOHN S. LOUCKS St. Edward s Unversty Slde 1 Chapter 3 Descrptve Statstcs: Numercal Measures Part B Measures of Dstrbuton Shape, Relatve Locaton, and Detectng Outlers Eploratory Data Analyss

More information

Principles of Finance

Principles of Finance Prncples of Fnance Grzegorz Trojanowsk Lecture 6: Captal Asset Prcng Model Prncples of Fnance - Lecture 6 1 Lecture 6 materal Requred readng: Elton et al., Chapters 13, 14, and 15 Supplementary readng:

More information

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS QUESTIONS 9.1. (a) In a log-log model the dependent and all explanatory varables are n the logarthmc form. (b) In the log-ln model the dependent varable

More information

Lecture Note 1: Foundations 1

Lecture Note 1: Foundations 1 Economcs 703 Advanced Mcroeconomcs Prof. Peter Cramton ecture Note : Foundatons Outlne A. Introducton and Examples B. Formal Treatment. Exstence of Nash Equlbrum. Exstence wthout uas-concavty 3. Perfect

More information

Lecture 5: Introduction to Entropy Coding. Thinh Nguyen Oregon State University

Lecture 5: Introduction to Entropy Coding. Thinh Nguyen Oregon State University Lecture 5: Introducton to Entropy Codng Thnh guyen Oregon State Unversty Codes Defntons: Aphabet: s a coecton of symbos. Letters (symbos): s an eement of an aphabet. Codng: the assgnment of bnary sequences

More information

** Professor of Finance, College of Business Administration, University of Houston, Houston, TX Tel. (713)

** Professor of Finance, College of Business Administration, University of Houston, Houston, TX Tel. (713) Rankng Portfolo Performance by a Jont Means and Varances Equalty Test by Joel Owen* and Ramon Rabnovtch** February 998 Professor of Statstcs, Stern School of Busness, New York Unversty, 44 West Fourth

More information

Regular Banach Spaces and Large Deviations of Random Sums

Regular Banach Spaces and Large Deviations of Random Sums Regular Banach Spaces and Large Devatons of Random Sums Arkad Nemrovsk Workng paper, verson of December 3, 004 Overvew A typcal result on large devatons of sums wth random terms states that f ξ t are ndependent

More information

Finance 402: Problem Set 1 Solutions

Finance 402: Problem Set 1 Solutions Fnance 402: Problem Set 1 Solutons Note: Where approprate, the fnal answer for each problem s gven n bold talcs for those not nterested n the dscusson of the soluton. 1. The annual coupon rate s 6%. A

More information

Economics 1410 Fall Section 7 Notes 1. Define the tax in a flexible way using T (z), where z is the income reported by the agent.

Economics 1410 Fall Section 7 Notes 1. Define the tax in a flexible way using T (z), where z is the income reported by the agent. Economcs 1410 Fall 2017 Harvard Unversty Yaan Al-Karableh Secton 7 Notes 1 I. The ncome taxaton problem Defne the tax n a flexble way usng T (), where s the ncome reported by the agent. Retenton functon:

More information

A Set of new Stochastic Trend Models

A Set of new Stochastic Trend Models A Set of new Stochastc Trend Models Johannes Schupp Longevty 13, Tape, 21 th -22 th September 2017 www.fa-ulm.de Introducton Uncertanty about the evoluton of mortalty Measure longevty rsk n penson or annuty

More information

Accuracy guarantees for l 1 -recovery

Accuracy guarantees for l 1 -recovery Accuracy guarantees for l -recovery Anatol Judtsky LJK, Unversté J. Fourer, B.P. 53, 38 Grenoble Cedex 9, France Anatol.Judtsky@mag.fr Arkad Nemrovsk Georga Insttute of Technology, Atlanta, Georga 333,

More information

Consensus Patterns (Probably) Has no EPTAS

Consensus Patterns (Probably) Has no EPTAS Consensus Patterns (Probably) Has no EPTAS Chrstna Boucher Chrstne Lo Danel Lokshantov June 23, 2015 Abstract Gven n length-l strngs S = {s 1,..., s n } over a constant sze alphabet Σ together wth an nteger

More information

Likelihood Fits. Craig Blocker Brandeis August 23, 2004

Likelihood Fits. Craig Blocker Brandeis August 23, 2004 Lkelhood Fts Crag Blocker Brandes August 23, 2004 Outlne I. What s the queston? II. Lkelhood Bascs III. Mathematcal Propertes IV. Uncertantes on Parameters V. Mscellaneous VI. Goodness of Ft VII. Comparson

More information