Using radial basis functions for option pricing

Size: px
Start display at page:

Download "Using radial basis functions for option pricing"

Transcription

1 Using radial basis functions for option pricing Elisabeth Larsson Division of Scientific Computing Department of Information Technology Uppsala University Actuarial Mathematics Workshop, March 19, 2013, University of Leicester E. Larsson, Leicester, March 19, 2013 (1 : 23)

2 The option pricing test problem Basic RBF approximation method Variations of the theme E. Larsson, Leicester, March 19, 2013 (2 : 23)

3 Introduction and motivation Basis functions: φ j (x) = φ( x x j ). Translates of one single function rotated around a center point. Example: Gaussians φ(εr) = exp( ε 2 r 2 ) Approximation: s ε (x ) = N j=1 λ jφ j (x ) Solution: Collocation with data yields {λ j } N j=1. E. Larsson, Leicester, March 19, 2013 (3 : 23)

4 Why use RBFs for option pricing? Advantages Flexibility wrt to the computational domain. Allows adaptive node placement As easy in d dimensions. Spectral accuracy / exponential convergence. Allows direct calculation of and Γ. Challenges Parameter selection strategies Ill-conditioning Computational cost E. Larsson, Leicester, March 19, 2013 (4 : 23)

5 The basic option pricing test problem Purpose: To determine the current value of an option. Example: European basket call option. Expiration date: Strike price: Dimensions: T =Dec 30, 2013 K=200 SEK d = 3 the number of underlying assets The multi-dimensional Black-Scholes equation: u d t = r u x i + 1 d [ ] σσ T x i 2 x 2 u ix j ru. ij x i x j i=1 i,j=1 Variables: x R d asset prices, t time left to expiration. Parameters: σ volatility matrix, r risk free interest rate. E. Larsson, Leicester, March 19, 2013 (5 : 23)

6 Initial and boundary conditions Contract function Boundary conditions ( Φ(x) = max 0, 1 ) d d i=1 x i K. E. Larsson, Leicester, March 19, 2013 (6 : 23) u(x, t) 1 d d x i Ke rt i=1 as x. S. Jansson and J. Tysk, 2006: Feynman-Kac formulas for Black-Scholes type operators

7 Discretization in time and space Solution form: u(x, t) Black-Scholes: N λ j (t)φ j (x) j=1 N λ j(t)φ j (x) = j=1 Time: 1 N (λ n+1 j λ n j )φ j (x) = k j=1 Boundary: Interior: Initially: N j=1 N j=1 N j=1 N λ j (t)lφ j (x) j=1 (αλ n+1 j + (1 α)λ n j )Lφ j (x) λ n+1 j φ j (x i ) = g(x i, t n+1 ), x i at Ω λ n+1 j a j (x i ) = N λ n j b j (x i ), j=1 N λ 0 j φ j (x i ) = Φ(x i ) j=1 E. Larsson, Leicester, March 19, 2013 (7 : 23) x i in Ω

8 How can we play with the nodes? I Square domain, N = 1165 E. Larsson, Leicester, March 19, 2013 (8 : 23)

9 How can we play with the nodes? Square domain, N = 1165 Triangular domain, N = 603 E. Larsson, Leicester, March 19, 2013 (8 : 23)

10 How can we play with the nodes? Square domain, N = 1165 Triangular domain, N = 603 E. Larsson, Leicester, March 19, 2013 (8 : 23)

11 How can we play with the nodes? Square domain, N = 1165 Triangular domain, N = 603 Adapted nodes, N = 599 E. Larsson, Leicester, March 19, 2013 (8 : 23)

12 How can we play with the nodes? Square domain, N = 1165 Triangular domain, N = 603 Adapted nodes, N = 599 Change of domain N N/d! Redistribution improves local accuracy E. Larsson, Leicester, March 19, 2013 (8 : 23)

13 Numerical results for different node sets Square Triangle Adaptive Error measured in the region of interest. Triangle and square same accuracy. Adaptive an order of magnitude better. Pettersson, Larsson, Marcusson, Persson, 2008: Improved radial basis function methods for multi-dimensional option pricing. E. Larsson, Leicester, March 19, 2013 (9 : 23)

14 Another game of nodes Domain and interior nodes are invariant with respect to 90 degree rotations, reflections in diagonals and axes. Employ the generalized Fourier transform to reduce memory and computational cost. However, operator must have same invariance. E. Larsson, Leicester, March 19, 2013 (10 : 23)

15 Transforming the Black-Scholes equation into the heat equation u t = r d i=1 x i u x i d [ ] σσ T x 2 u ix j ru. ij x i x j i,j=1 Change variables: x = exp(a T (Q T y + b)) Change function: u(t, y) = e γt+ξt y p(t, y) p t = y p A is computed from A T A = 1 2 d k=1 (σ kσ T k ). Q and b are arbitrary. γ and ξ depend on σ, r, A and Q. E. Larsson, Leicester, March 19, 2013 (11 : 23)

16 What happens with the domain and the nodes? New variables Original variables The transformation leads to automatically adapted node placement. E. Larsson, Leicester, March 19, 2013 (12 : 23)

17 Numerical results with the generalized Fourier transform Error-Work Gain with GFT Red Uni square, Black GFT, Blue Adapted tri 2D * 3D Given N Same accuracy for square and RBF-GFT. Lower cost for RBF-GFT. 2D 48, 3D 864. Adapted is more efficient at least in 2D. Larsson, Åhlander, Hall, 2008: Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform E. Larsson, Leicester, March 19, 2013 (13 : 23)

18 Exploiting the spectral accuracy Parabolic PDE. We need to get low frequencies right. Result sensitive to node placement. We use more nodes than we would like. E. Larsson, Leicester, March 19, 2013 (14 : 23)

19 Exploiting the spectral accuracy (cont.) Collocation Least squares E. Larsson, Leicester, March 19, 2013 (15 : 23)

20 A multi-level least-squares RBF approach Coarse grid with small ε for smooth part. Fine grid with larger ε for initial non-smoothness. Boundary conditions are collocated (necessary). Computational cost turns out to be less than for a collocation aproach. Larsson, Gomes, 2013: A least squares multi-level radial basis method with applications in finance E. Larsson, Leicester, March 19, 2013 (16 : 23)

21 Errors for the two-grid least-squares method Error evolution Final error blue: N = 40, ε = 10 red: N = 21, ε = 0.8 black: Two level 150 least-squares evaluation points. E. Larsson, Leicester, March 19, 2013 (17 : 23)

22 Two-dimensional problem N f = 320, N c = 76, N e = 932, ε f = 4, ε c = 1 Ref. sol.: Adaptive finite differences: Persson, von Sydow, E. Larsson, Leicester, March 19, 2013 (18 : 23)

23 Flexibility wrt the computational domain Easy way to save computations by going to simplex. Adaptivity, least squares or a multi-level/multi-scale approach is needed. Any of the discussed aproaches can be used in higher dimensions, but cost becomes an issue. Future direction: Adaptive partition of unity RBF-methods. E. Larsson, Leicester, March 19, 2013 (19 : 23)

24 Currently: Partition of unity RBF-methods (RBF-PU for interpolation Wendland 2002) Global approximant: M ũ(x) = w i (x)u i (x), i=1 where w i (x) are weight functions. Local RBF approximants: u i (x) = N i j=1 λi j φ j(x). Applying operators: M ũ(x) = w i u i + 2 w i u i + w i u i i=1 Sparsity reduces memory and computational cost. Subdomain approach introduces parallelism. E. Larsson, Leicester, March 19, 2013 (20 : 23)

25 Practical challenges in RBF approximation Conditioning for small ε and large N Spectral convergence with N requires fixed ε. For smooth solutions, the best ε is small. We need to compute in the red region. log 10 (cond(a)) Computational cost Coefficient matrices are typically dense (for infinitely smooth RBFs). Direct methods are O(N 3 ) and known fast methods are most efficient for larger ε. E. Larsson, Leicester, March 19, 2013 (21 : 23)

26 The RBF-QR method: Idea The Gaussian RBFs are expanded in terms of { Tj,m c (x) = e ε2 r 2 r 2m T j 2m (r) cos((2m + p)θ), Tj,m s (x) = e ε2 r 2 r 2m T j 2m (r) sin((2m + p)θ), leading to Φ(x ) = C D T (x ), where c ij is O(1) and D = diag(o(ε 0, ε 2, ε 2, ε 4, ε 4, ε 4, ε 6,...)). Then C is QR-factorized so that Φ(x ) = Q [ ] [ ] D R 1 R T (x ) 0 D 2 Form a new basis (in the same space) Ψ(x ) = D 1 1 R 1 1 QH Φ(x ) = [ I R ] T (x ). E. Larsson, Leicester, March 19, 2013 (22 : 23)

27 Stable computation as ε 0 and N The RBF-QR method allows stable computations for small ε. (Fornberg, Larsson, Flyer 2011) Consider a finite non-periodic domain. Theorem (Platte, Trefethen, and Kuijlaars 2010): Exponential convergence on equispaced nodes exponential ill-conditioning. Solution #1: Cluster nodes towards the domain boundaries. E. Larsson, Leicester, March 19, 2013 (23 : 23)

Radial basis function methods in computational finance

Radial basis function methods in computational finance Proceedings of the 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 213 24 27 June, 213. Radial basis function methods in computational finance

More information

Improved radial basis function methods for multi-dimensional option pricing

Improved radial basis function methods for multi-dimensional option pricing Improved radial basis function methods for multi-dimensional option pricing Ulrika Pettersson a;, Elisabeth Larsson a;2;λ, Gunnar Marcusson b and Jonas Persson a; a Address: Department of Information Technology,

More information

Radial Basis Function Methods for Pricing Multi-Asset Options

Radial Basis Function Methods for Pricing Multi-Asset Options IT Licentiate theses 2016-001 Radial Basis Function Methods for Pricing Multi-Asset Options VICTOR SHCHERBAKOV UPPSALA UNIVERSITY Department of Information Technology Radial Basis Function Methods for

More information

Introduction to Numerical PDEs

Introduction to Numerical PDEs Introduction to Numerical PDEs Varun Shankar February 16, 2016 1 Introduction In this chapter, we will introduce a general classification scheme for linear second-order PDEs, and discuss when they have

More information

PROJECT REPORT. Dimension Reduction for the Black-Scholes Equation. Alleviating the Curse of Dimensionality

PROJECT REPORT. Dimension Reduction for the Black-Scholes Equation. Alleviating the Curse of Dimensionality Dimension Reduction for the Black-Scholes Equation Alleviating the Curse of Dimensionality Erik Ekedahl, Eric Hansander and Erik Lehto Report in Scientic Computing, Advanced Course June 2007 PROJECT REPORT

More information

Lecture 4 - Finite differences methods for PDEs

Lecture 4 - Finite differences methods for PDEs Finite diff. Lecture 4 - Finite differences methods for PDEs Lina von Sydow Finite differences, Lina von Sydow, (1 : 18) Finite difference methods Finite diff. Black-Scholes equation @v @t + 1 2 2 s 2

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

Financial Mathematics and Supercomputing

Financial Mathematics and Supercomputing GPU acceleration in early-exercise option valuation Álvaro Leitao and Cornelis W. Oosterlee Financial Mathematics and Supercomputing A Coruña - September 26, 2018 Á. Leitao & Kees Oosterlee SGBM on GPU

More information

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models

Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Sparse Wavelet Methods for Option Pricing under Lévy Stochastic Volatility models Norbert Hilber Seminar of Applied Mathematics ETH Zürich Workshop on Financial Modeling with Jump Processes p. 1/18 Outline

More information

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Applied Mathematics Volume 1, Article ID 796814, 1 pages doi:11155/1/796814 Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Zhongdi

More information

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T )

In this lecture we will solve the final-value problem derived in the previous lecture 4, V (1) + rs = rv (t < T ) MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 5: THE BLACK AND SCHOLES FORMULA AND ITS GREEKS RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this lecture we will solve the final-value problem

More information

Conformal Invariance of the Exploration Path in 2D Critical Bond Percolation in the Square Lattice

Conformal Invariance of the Exploration Path in 2D Critical Bond Percolation in the Square Lattice Conformal Invariance of the Exploration Path in 2D Critical Bond Percolation in the Square Lattice Chinese University of Hong Kong, STAT December 12, 2012 (Joint work with Jonathan TSAI (HKU) and Wang

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods

Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods arxiv:1711.09852v2 [q-fin.cp] 17 Aug 2018 Pricing Derivatives under Multiple Stochastic Factors by Localized Radial Basis Function Methods Slobodan Milovanović Victor Shcherbakov Uppsala University Uppsala

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

Nonlinear Black-Scholes Equation. Through Radial Basis Functions

Nonlinear Black-Scholes Equation. Through Radial Basis Functions Journal of Applied Mathematics & Bioinformatics, vol.4, no.3, 2014, 75-86 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2014 Nonlinear Black-Scholes Equation Through Radial Basis Functions

More information

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting.

Introduction Random Walk One-Period Option Pricing Binomial Option Pricing Nice Math. Binomial Models. Christopher Ting. Binomial Models Christopher Ting Christopher Ting http://www.mysmu.edu/faculty/christophert/ : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October 14, 2016 Christopher Ting QF 101 Week 9 October

More information

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004

HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR 1D PARABOLIC EQUATIONS. Ahmet İzmirlioğlu. BS, University of Pittsburgh, 2004 HIGH ORDER DISCONTINUOUS GALERKIN METHODS FOR D PARABOLIC EQUATIONS by Ahmet İzmirlioğlu BS, University of Pittsburgh, 24 Submitted to the Graduate Faculty of Art and Sciences in partial fulfillment of

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 3, Mikhail Zaslavsky 3 University of Michigan, Ann

More information

Pricing Early-exercise options

Pricing Early-exercise options Pricing Early-exercise options GPU Acceleration of SGBM method Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee Lausanne - December 4, 2016

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

Space time adaptive finite difference method for European multi-asset options

Space time adaptive finite difference method for European multi-asset options Computers and Mathematics with Applications 53 (2007) 1159 1180 www.elsevier.com/locate/camwa Space time adaptive finite difference method for European multi-asset options Per Lötstedt a,, Jonas Persson

More information

A model reduction approach to numerical inversion for parabolic partial differential equations

A model reduction approach to numerical inversion for parabolic partial differential equations A model reduction approach to numerical inversion for parabolic partial differential equations Liliana Borcea Alexander V. Mamonov 2, Vladimir Druskin 2, Mikhail Zaslavsky 2 University of Michigan, Ann

More information

Finite Element Method

Finite Element Method In Finite Difference Methods: the solution domain is divided into a grid of discrete points or nodes the PDE is then written for each node and its derivatives replaced by finite-divided differences In

More information

ANALYSIS OF THE BINOMIAL METHOD

ANALYSIS OF THE BINOMIAL METHOD ANALYSIS OF THE BINOMIAL METHOD School of Mathematics 2013 OUTLINE 1 CONVERGENCE AND ERRORS OUTLINE 1 CONVERGENCE AND ERRORS 2 EXOTIC OPTIONS American Options Computational Effort OUTLINE 1 CONVERGENCE

More information

Computational Finance Binomial Trees Analysis

Computational Finance Binomial Trees Analysis Computational Finance Binomial Trees Analysis School of Mathematics 2018 Review - Binomial Trees Developed a multistep binomial lattice which will approximate the value of a European option Extended the

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Space-time adaptive finite difference method for European multi-asset options

Space-time adaptive finite difference method for European multi-asset options Space-time adaptive finite difference method for European multi-asset options Per Lötstedt 1, Jonas Persson 1, Lina von Sydow 1 Ý, Johan Tysk 2 Þ 1 Division of Scientific Computing, Department of Information

More information

A local RBF method based on a finite collocation approach

A local RBF method based on a finite collocation approach Boundary Elements and Other Mesh Reduction Methods XXXVIII 73 A local RBF method based on a finite collocation approach D. Stevens & H. Power Department of Mechanical Materials and Manufacturing Engineering,

More information

Computational Finance Finite Difference Methods

Computational Finance Finite Difference Methods Explicit finite difference method Computational Finance Finite Difference Methods School of Mathematics 2018 Today s Lecture We now introduce the final numerical scheme which is related to the PDE solution.

More information

Galerkin Least Square FEM for the European option price with CEV model

Galerkin Least Square FEM for the European option price with CEV model Galerkin Least Square FEM for the European option price with CEV model A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of requirements for

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS School of Mathematics 2013 OUTLINE Review 1 REVIEW Last time Today s Lecture OUTLINE Review 1 REVIEW Last time Today s Lecture 2 DISCRETISING THE PROBLEM Finite-difference approximations

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE

NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE Trends in Mathematics - New Series Information Center for Mathematical Sciences Volume 13, Number 1, 011, pages 1 5 NUMERICAL METHODS OF PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS FOR OPTION PRICE YONGHOON

More information

Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation

Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation Numerical Solution of Two Asset Jump Diffusion Models for Option Valuation Simon S. Clift and Peter A. Forsyth Original: December 5, 2005 Revised: January 31, 2007 Abstract Under the assumption that two

More information

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation

Chapter 3: Black-Scholes Equation and Its Numerical Evaluation Chapter 3: Black-Scholes Equation and Its Numerical Evaluation 3.1 Itô Integral 3.1.1 Convergence in the Mean and Stieltjes Integral Definition 3.1 (Convergence in the Mean) A sequence {X n } n ln of random

More information

Adaptive Radial Basis Functions for Option Pricing. Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester

Adaptive Radial Basis Functions for Option Pricing. Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester Adaptive Radial Basis Functions for Option Pricing Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester by Juxi Li Department of Mathematics University of Leicester June

More information

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard

Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Option pricing in the stochastic volatility model of Barndorff-Nielsen and Shephard Indifference pricing and the minimal entropy martingale measure Fred Espen Benth Centre of Mathematics for Applications

More information

Sensitivity Analysis on Long-term Cash flows

Sensitivity Analysis on Long-term Cash flows Sensitivity Analysis on Long-term Cash flows Hyungbin Park Worcester Polytechnic Institute 19 March 2016 Eastern Conference on Mathematical Finance Worcester Polytechnic Institute, Worceseter, MA 1 / 49

More information

Localised Radial Basis Function Methods for Partial Differential Equations

Localised Radial Basis Function Methods for Partial Differential Equations Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1600 Localised Radial Basis Function Methods for Partial Differential Equations VICTOR SHCHERBAKOV ACTA

More information

Evaluation of Asian option by using RBF approximation

Evaluation of Asian option by using RBF approximation Boundary Elements and Other Mesh Reduction Methods XXVIII 33 Evaluation of Asian option by using RBF approximation E. Kita, Y. Goto, F. Zhai & K. Shen Graduate School of Information Sciences, Nagoya University,

More information

Lecture 7: Computation of Greeks

Lecture 7: Computation of Greeks Lecture 7: Computation of Greeks Ahmed Kebaier kebaier@math.univ-paris13.fr HEC, Paris Outline 1 The log-likelihood approach Motivation The pathwise method requires some restrictive regularity assumptions

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas

Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas Pricing Algorithms for financial derivatives on baskets modeled by Lévy copulas Christoph Winter, ETH Zurich, Seminar for Applied Mathematics École Polytechnique, Paris, September 6 8, 26 Introduction

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Abdul-Lateef Haji-Ali Based on slides by: Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Haji-Ali (Oxford)

More information

Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes

Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes Fast Pricing and Calculation of Sensitivities of OTM European Options Under Lévy Processes Sergei Levendorskĭi Jiayao Xie Department of Mathematics University of Leicester Toronto, June 24, 2010 Levendorskĭi

More information

Matrix-based numerical modelling of financial differential equations. Robert Piché and Juho Kanniainen

Matrix-based numerical modelling of financial differential equations. Robert Piché and Juho Kanniainen Matrix-based numerical modelling of financial differential equations Robert Piché and Juho Kanniainen Tampere University of Technology PO Box 553, FI-33101 Tampere, Finland E-mail: robert.piche@tut.fi

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

CRANK-NICOLSON SCHEME FOR ASIAN OPTION

CRANK-NICOLSON SCHEME FOR ASIAN OPTION CRANK-NICOLSON SCHEME FOR ASIAN OPTION By LEE TSE YUENG A thesis submitted to the Department of Mathematical and Actuarial Sciences, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, in

More information

The data-driven COS method

The data-driven COS method The data-driven COS method Á. Leitao, C. W. Oosterlee, L. Ortiz-Gracia and S. M. Bohte Delft University of Technology - Centrum Wiskunde & Informatica Reading group, March 13, 2017 Reading group, March

More information

arxiv: v1 [q-fin.cp] 1 Nov 2016

arxiv: v1 [q-fin.cp] 1 Nov 2016 Essentially high-order compact schemes with application to stochastic volatility models on non-uniform grids arxiv:1611.00316v1 [q-fin.cp] 1 Nov 016 Bertram Düring Christof Heuer November, 016 Abstract

More information

The data-driven COS method

The data-driven COS method The data-driven COS method Á. Leitao, C. W. Oosterlee, L. Ortiz-Gracia and S. M. Bohte Delft University of Technology - Centrum Wiskunde & Informatica CMMSE 2017, July 6, 2017 Álvaro Leitao (CWI & TUDelft)

More information

An IMEX-method for pricing options under Bates model using adaptive finite differences Rapport i Teknisk-vetenskapliga datorberäkningar

An IMEX-method for pricing options under Bates model using adaptive finite differences Rapport i Teknisk-vetenskapliga datorberäkningar PROJEKTRAPPORT An IMEX-method for pricing options under Bates model using adaptive finite differences Arvid Westlund Rapport i Teknisk-vetenskapliga datorberäkningar Jan 2014 INSTITUTIONEN FÖR INFORMATIONSTEKNOLOGI

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

A Study on Numerical Solution of Black-Scholes Model

A Study on Numerical Solution of Black-Scholes Model Journal of Mathematical Finance, 8, 8, 37-38 http://www.scirp.org/journal/jmf ISSN Online: 6-44 ISSN Print: 6-434 A Study on Numerical Solution of Black-Scholes Model Md. Nurul Anwar,*, Laek Sazzad Andallah

More information

Stochastic Grid Bundling Method

Stochastic Grid Bundling Method Stochastic Grid Bundling Method GPU Acceleration Delft University of Technology - Centrum Wiskunde & Informatica Álvaro Leitao Rodríguez and Cornelis W. Oosterlee London - December 17, 2015 A. Leitao &

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

Multiname and Multiscale Default Modeling

Multiname and Multiscale Default Modeling Multiname and Multiscale Default Modeling Jean-Pierre Fouque University of California Santa Barbara Joint work with R. Sircar (Princeton) and K. Sølna (UC Irvine) Special Semester on Stochastics with Emphasis

More information

PDE Project Course 1. Adaptive finite element methods

PDE Project Course 1. Adaptive finite element methods PDE Project Course 1. Adaptive finite element methods Anders Logg logg@math.chalmers.se Department of Computational Mathematics PDE Project Course 03/04 p. 1 Lecture plan Introduction to FEM FEM for Poisson

More information

Graph signal processing for clustering

Graph signal processing for clustering Graph signal processing for clustering Nicolas Tremblay PANAMA Team, INRIA Rennes with Rémi Gribonval, Signal Processing Laboratory 2, EPFL, Lausanne with Pierre Vandergheynst. What s clustering? N. Tremblay

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu

4. Black-Scholes Models and PDEs. Math6911 S08, HM Zhu 4. Black-Scholes Models and PDEs Math6911 S08, HM Zhu References 1. Chapter 13, J. Hull. Section.6, P. Brandimarte Outline Derivation of Black-Scholes equation Black-Scholes models for options Implied

More information

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION J. KSIAM Vol.14, No.3, 175 187, 21 AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION DARAE JEONG, IN-SUK WEE, AND JUNSEOK KIM DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-71, KOREA E-mail

More information

Research Statement. Dapeng Zhan

Research Statement. Dapeng Zhan Research Statement Dapeng Zhan The Schramm-Loewner evolution (SLE), first introduced by Oded Schramm ([12]), is a oneparameter (κ (0, )) family of random non-self-crossing curves, which has received a

More information

Non-semimartingales in finance

Non-semimartingales in finance Non-semimartingales in finance Pricing and Hedging Options with Quadratic Variation Tommi Sottinen University of Vaasa 1st Northern Triangular Seminar 9-11 March 2009, Helsinki University of Technology

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Initial Value Problem for the European Call rf = F t + rsf S + 1 2 σ2 S 2 F SS for (S,

More information

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs.

Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs. Functional vs Banach space stochastic calculus & strong-viscosity solutions to semilinear parabolic path-dependent PDEs Andrea Cosso LPMA, Université Paris Diderot joint work with Francesco Russo ENSTA,

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Pricing American Options Using a Space-time Adaptive Finite Difference Method

Pricing American Options Using a Space-time Adaptive Finite Difference Method Pricing American Options Using a Space-time Adaptive Finite Difference Method Jonas Persson Abstract American options are priced numerically using a space- and timeadaptive finite difference method. The

More information

The Forward Kolmogorov Equation for Two Dimensional Options

The Forward Kolmogorov Equation for Two Dimensional Options The Forward Kolmogorov Equation for Two Dimensional Options Antoine Conze (Nexgenfs bank), Nicolas Lantos (Nexgenfs bank and UPMC), Olivier Pironneau (LJLL, University of Paris VI) March, 04 Abstract Pricing

More information

Advanced Numerical Techniques for Financial Engineering

Advanced Numerical Techniques for Financial Engineering Advanced Numerical Techniques for Financial Engineering Andreas Binder, Heinz W. Engl, Andrea Schatz Abstract We present some aspects of advanced numerical analysis for the pricing and risk managment of

More information

A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options

A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options A Highly Efficient Shannon Wavelet Inverse Fourier Technique for Pricing European Options Luis Ortiz-Gracia Centre de Recerca Matemàtica (joint work with Cornelis W. Oosterlee, CWI) Models and Numerics

More information

Solving the Black-Scholes Equation

Solving the Black-Scholes Equation Solving the Black-Scholes Equation An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2014 Initial Value Problem for the European Call The main objective of this lesson is solving

More information

All Investors are Risk-averse Expected Utility Maximizers

All Investors are Risk-averse Expected Utility Maximizers All Investors are Risk-averse Expected Utility Maximizers Carole Bernard (UW), Jit Seng Chen (GGY) and Steven Vanduffel (Vrije Universiteit Brussel) AFFI, Lyon, May 2013. Carole Bernard All Investors are

More information

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin

SPDE and portfolio choice (joint work with M. Musiela) Princeton University. Thaleia Zariphopoulou The University of Texas at Austin SPDE and portfolio choice (joint work with M. Musiela) Princeton University November 2007 Thaleia Zariphopoulou The University of Texas at Austin 1 Performance measurement of investment strategies 2 Market

More information

High Dimensional Edgeworth Expansion. Applications to Bootstrap and Its Variants

High Dimensional Edgeworth Expansion. Applications to Bootstrap and Its Variants With Applications to Bootstrap and Its Variants Department of Statistics, UC Berkeley Stanford-Berkeley Colloquium, 2016 Francis Ysidro Edgeworth (1845-1926) Peter Gavin Hall (1951-2016) Table of Contents

More information

Practical example of an Economic Scenario Generator

Practical example of an Economic Scenario Generator Practical example of an Economic Scenario Generator Martin Schenk Actuarial & Insurance Solutions SAV 7 March 2014 Agenda Introduction Deterministic vs. stochastic approach Mathematical model Application

More information

Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM

Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM Copulas? What copulas? R. Chicheportiche & J.P. Bouchaud, CFM Multivariate linear correlations Standard tool in risk management/portfolio optimisation: the covariance matrix R ij = r i r j Find the portfolio

More information

Real Options and Game Theory in Incomplete Markets

Real Options and Game Theory in Incomplete Markets Real Options and Game Theory in Incomplete Markets M. Grasselli Mathematics and Statistics McMaster University IMPA - June 28, 2006 Strategic Decision Making Suppose we want to assign monetary values to

More information

Monte Carlo Methods in Finance

Monte Carlo Methods in Finance Monte Carlo Methods in Finance Peter Jackel JOHN WILEY & SONS, LTD Preface Acknowledgements Mathematical Notation xi xiii xv 1 Introduction 1 2 The Mathematics Behind Monte Carlo Methods 5 2.1 A Few Basic

More information

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin

BACHELIER FINANCE SOCIETY. 4 th World Congress Tokyo, Investments and forward utilities. Thaleia Zariphopoulou The University of Texas at Austin BACHELIER FINANCE SOCIETY 4 th World Congress Tokyo, 26 Investments and forward utilities Thaleia Zariphopoulou The University of Texas at Austin 1 Topics Utility-based measurement of performance Utilities

More information

Valuation of derivative assets Lecture 6

Valuation of derivative assets Lecture 6 Valuation of derivative assets Lecture 6 Magnus Wiktorsson September 14, 2017 Magnus Wiktorsson L6 September 14, 2017 1 / 13 Feynman-Kac representation This is the link between a class of Partial Differential

More information

Time-changed Brownian motion and option pricing

Time-changed Brownian motion and option pricing Time-changed Brownian motion and option pricing Peter Hieber Chair of Mathematical Finance, TU Munich 6th AMaMeF Warsaw, June 13th 2013 Partially joint with Marcos Escobar (RU Toronto), Matthias Scherer

More information

Machine Learning for Quantitative Finance

Machine Learning for Quantitative Finance Machine Learning for Quantitative Finance Fast derivative pricing Sofie Reyners Joint work with Jan De Spiegeleer, Dilip Madan and Wim Schoutens Derivative pricing is time-consuming... Vanilla option pricing

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE.

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. 7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. Accuracy requirements

More information

FX Smile Modelling. 9 September September 9, 2008

FX Smile Modelling. 9 September September 9, 2008 FX Smile Modelling 9 September 008 September 9, 008 Contents 1 FX Implied Volatility 1 Interpolation.1 Parametrisation............................. Pure Interpolation.......................... Abstract

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Program Advisor: Howard Elman Department of Computer Science May 5, 2016 Tengfei

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

Genetics and/of basket options

Genetics and/of basket options Genetics and/of basket options Wolfgang Karl Härdle Elena Silyakova Ladislaus von Bortkiewicz Chair of Statistics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de Motivation 1-1 Basket derivatives

More information

symmys.com 3.2 Projection of the invariants to the investment horizon

symmys.com 3.2 Projection of the invariants to the investment horizon 122 3 Modeling the market In the swaption world the underlying rate (3.57) has a bounded range and thus it does not display the explosive pattern typical of a stock price. Therefore the swaption prices

More information