4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

Size: px
Start display at page:

Download "4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:"

Transcription

1 4.1 Exponential Functions Hartfield MATH 2040 Unit 4 Page 1 Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest A t P 1 r n nt Formula 2 Continuously Compounded Interest rt A t Pe t = units of time in years P = principle (initial value) r = rate of interest as a decimal A(t) = amount at/after time t n = number of compounds per year For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: annually (n = 1), semiannually (n = 2), quarterly (n = 4), bimonthly (n = 6), monthly (n = 12), biweekly (n = 26), weekly (n = 52), daily (n = 360 or 365). In economics, financial institutions have to report an annual percentage change even though their nominal rate of interest is for some other interval of time. A formula may ask for a future amount when given a present amount (given P, find A(t)) or it may ask for a present amount when given a future amount (given A(t), find P).

2 Hartfield MATH 2040 Unit 4 Page 2 Ex. 1: Kelsey has $2000 to save for three years. She goes to three different banks and finds she can lock in the following rates. Rounding down to the penny, how much would she have with each bank and thus which bank is the best option? Bank A: Bank B: Bank C: 4.20% interest per year compounded quarterly 4.18% interest per year compounded daily 4.15% interest per year compounded continuously

3 Hartfield MATH 2040 Unit 4 Page 3 Ex. 2: To the nearest thousandth of a percent, what is the Annual Percentage Yield on each bank? Bank A: Bank B: Bank C: 4.20% interest per year compounded quarterly 4.18% interest per year compounded daily 4.15% interest per year compounded continuously

4 Ex. 3: A $24,000 automobile depreciates by 40% per year. Find its value in 6 months and then in 3 years. Hartfield MATH 2040 Unit 4 Page 4

5 4.3a Differentiation of Exponential Functions Hartfield MATH 2040 Unit 4 Page 5 Rule 8: Derivative of a Natural Exponential Ex. 1: Find the derivative. d e dx x e x f x 2 x 3 e If the exponential function has a function within the exponent, we can extend rule 8 using Chain Rule: Rule 8a: Generalized Derivative of a Natural Exponential d e f x e f x f x dx

6 Hartfield MATH 2040 Unit 4 Page 6 Ex. 2: Find the derivative. Then evaluate the derivative at the given x-value and approximate it to three decimal places. Ex. 3: Find the second derivative. f x e x 3 2, x f x xe e f (1) x

7 Applications Hartfield MATH 2040 Unit 4 Page 7 Ex. 1: The percentage P(t) of people surviving to age t years in ancient Rome can be approximated by P(t) = 92e t. Calculate P (22) and explain what the result indicates. (Source: Finite Mathematics & Calculus Applied to the Real World (1996) p. 972, #73) Ex. 2: A cup of coffee brewed at 200 degrees, if left in a 70-degree room, will cool to T(t) = e 2.5t degrees in t hours. Determine the temperature of the coffee in 1 hour and the rate of change in the temperature at that time. (Source: 5 th edition p. 302, #76)

8 4.2 Logarithms & Exponential Equations Hartfield MATH 2040 Unit 4 Page 8 Review from algebra about solving exponential equations. Ex.: Solve 2x 1 2e Isolate an exponential expression on one side. 2. Take the natural logarithm (or common logarithm) of both sides. 3. Use the laws of logarithms to rewrite the exponential expression so that no variable remains in the exponent. 4. Apply basic algebraic and arithmetic manipulation to solve for x. 5. Use the laws of logarithms to simplify the solution and approximate the solution. 6. Check your solution.

9 Solving exercises with exponential equations Hartfield MATH 2040 Unit 4 Page 9 Ex. 1: To the tenth of a year, how long would it take an account to double if the interest rate is 9.9% A: compounded monthly. B: compounded continuously.

10 Hartfield MATH 2040 Unit 4 Page 10 Ex. 2: To the tenth of a year, how long would it take an account with an interest rate of 16.79% compounded daily (n=365) to A: triple in value. B: increase by 40%.

11 Hartfield MATH 2040 Unit 4 Page 11 Ex. 3: Using information from a recent Edmunds.com report, the resale value of a 2008 SUV is expected to depreciate up to 20% per year. To the tenth of a year, how long will it take value of an SUV to decrease by half?

12 4.3b Differentiation of Logarithmic Functions Hartfield MATH 2040 Unit 4 Page 12 Rule 9: Derivative of a Natural Logarithm d lnx dx 1 x Derivatives of Exponential & Logarithmic Functions of other bases Rule 10: Derivative of Exponential (base a) If the logarithmic function has a function within the logarithm, we can extend rule 9 using Chain Rule: d a dx x ln a a x Rule 9a: Generalized Derivative of a Natural Logarithm d ln f x dx f x f x Rule 11: Derivative of a Logarithm (base a) d log dx a x 1 lna x

13 Hartfield MATH 2040 Unit 4 Page 13 Ex. 1: Find the derivative. Ex. 2: Find the derivative. 2 f( x) ln x 2x 3 x 5 f( x) ln 1

14 Hartfield MATH 2040 Unit 4 Page 14 Ex. 3: Find the derivative. x f( x) e ln x 1 Ex. 4: Find the derivative. Then evaluate the derivative at the given x-value. lnx fx ( ) f (1) 2 x

15 4.3-c & 4.4 Economic Applications Hartfield MATH 2040 Unit 4 Page 15 Definition: Let D(p) be the consumer demand at price p. Then the consumer expenditure E is E(p) = p D(p) Ex. 1: If consumer demand for a commodity is given by the function D(p) = 8000e 0.05p, where p is the selling price in dollars, find the price that maximizes consumer expenditure. (Source: 4 th edition p. 290, #66)

16 Hartfield MATH 2040 Unit 4 Page 16 A similar exercise for maximizing revenue can be approached where the independent variable is the quantity x sold and price is a function of x (as opposed to the inverse relationship in consumer expenditure): R(x) = p(x) x Ex. 2: Find the quantity x (in thousands) and the price p (in dollars) where revenue is maximized if p(x) = 200e 0.25x.

17 Relative Rates of Change Hartfield MATH 2040 Unit 4 Page 17 While all derivatives are rates of change, not all derivatives consider the relative values of a function at a given point of time. In absolute terms a $10,000 product increasing at a rate of $100 a year has a higher rate of change than a $100 product increasing at $20 a year. Taking into respect the current value of each product however tells us that the $100 object has a higher relative rate of change. Definition: The relative rate of change in a function is the derivative of the natural log of the function; that is, Ex. 1: Find the absolute rate of change and the relative rate of change in f. Then evaluate the relative rate of change at the given value of t. f(t) = t 3, t = 10 d dt f() t ln ft ( ). f () t

18 Hartfield MATH 2040 Unit 4 Page 18 Applications of Relative Rates of Change Ex. 2: Find the absolute rate of change and the relative rate of change in f. Then evaluate the relative rate of change at the given value of t. f(t) = e t³, t = 5 Ex 1: The gross domestic product of a developing country is forecast to be G(t) = 5 + 2e 0.01t million dollars t years from now. Find the relative rate of change in the GDP 20 years from now. (Source: 4 th edition p. 303, #14)

19 Hartfield MATH 2040 Unit 4 Page 19 Ex 2: The population (in millions) of a city t years from now is given by the function P(t) = e 0.05t. (Source: 4 th edition p. 303, #14) a. Find the relative rate of change of the population 8 years from now. b. Will the relative rate of change ever reach 1.5%?

20 Demand Functions & the Elasticity of Demand Hartfield MATH 2040 Unit 4 Page 20 Definition: The demand function x = D(p) gives the quantity x of an item that will be demanded by consumers at price p. Statement: The Law of Downward-Sloping Demand states that since demand generally falls as prices rise, the slope of the demand function is negative. Since revenues are a product of prices and demand, a balance point should exist between increasing prices and increasing demand so that revenues are maximized. Definition: For a demand function D(p), the elasticity of demand is pd( p) Ep ( ). Dp ( ) If E(p) > 1, then demand is elastic and prices should be lowered to increase revenue. If E(p) < 1, then demand is inelastic and prices should be raised to increase revenue. At maximum revenue, E(p) = 1 and demand is unitary.

21 Hartfield MATH 2040 Unit 4 Page 21 Ex. 1: For the demand function D(p) = 100 p 2, determine where demand is elastic, inelastic, or unitary. Ex. 2: A liquor distributor wants to increase its revenues by discounting its bestselling liquor. If the demand function for this liquor is D(p) = 60 3p, where p is the price per bottle, and the current price is $15, will the discount succeed? (Source: 4 th edition p. 303, #28)

22 Hartfield MATH 2040 Unit 4 Page 22 Ex. 3: At a market level, the demand function for distilled spirits is defined by D(p) = 3.509p Determine where demand is elastic, inelastic, or unitary and analyze the relationship implied between taxes, liquor consumption, and government revenues. (Source: Journal of Consumer Research 12)

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2b 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity

: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity 4.3-4.5: Chain Rule, Rules for Exponential and Logarithmic Functions, and Elasticity The Chain Rule: Given y = f(g(x)). If the derivatives g (x) and f (g(x)) both exist, then y exists and (f(g(x))) = f

More information

Algebra 2 Unit 11 Practice Test Name:

Algebra 2 Unit 11 Practice Test Name: Algebra 2 Unit 11 Practice Test Name: 1. A study of the annual population of the red-winged blackbird in Ft. Mill, South Carolina, shows the population,, can be represented by the function, where the t

More information

Section 5.1 Simple and Compound Interest

Section 5.1 Simple and Compound Interest Section 5.1 Simple and Compound Interest Question 1 What is simple interest? Question 2 What is compound interest? Question 3 - What is an effective interest rate? Question 4 - What is continuous compound

More information

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018

Instructor: Elhoussine Ghardi Course: calcmanagementspring2018 Student: Date: Instructor: Elhoussine Ghardi Course: calcmanagementspring018 Assignment: HW3spring018 1. Differentiate the following function. f (x) = f(x) = 7 4x + 9 e x. f(x) = 6 ln x + 5x 7 3. Differentiate

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Autumn 2018 Sample Midterm 2c 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

Final Exam Sample Problems

Final Exam Sample Problems MATH 00 Sec. Final Exam Sample Problems Please READ this! We will have the final exam on Monday, May rd from 0:0 a.m. to 2:0 p.m.. Here are sample problems for the new materials and the problems from the

More information

t g(t) h(t) k(t)

t g(t) h(t) k(t) Problem 1. Determine whether g(t), h(t), and k(t) could correspond to a linear function or an exponential function, or neither. If it is linear or exponential find the formula for the function, and then

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 110 FINAL EXAM **Test** December 14, 2009 TEST VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number

More information

Name: Math 10250, Final Exam - Version A May 8, 2007

Name: Math 10250, Final Exam - Version A May 8, 2007 Math 050, Final Exam - Version A May 8, 007 Be sure that you have all 6 pages of the test. Calculators are allowed for this examination. The exam lasts for two hours. The Honor Code is in effect for this

More information

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale)

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Math 184 - Summer 2011 Midterm 3 Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Read all of the following information before starting the exam: Calculators

More information

Algebra II Quiz: Lessons 7.1 through 7.4 Review

Algebra II Quiz: Lessons 7.1 through 7.4 Review Class: Date: Algebra II Quiz: Lessons 7.1 through 7.4 Review Graph: 1. f( x) = 4 x 1 2. Graph the function: f( x) = 3 x 2 a. b. 3 c. d. 3. Find the y-intercept of the equation. y = 3 7 x a. 4 b. 21 c.

More information

Math 1314 Week 6 Session Notes

Math 1314 Week 6 Session Notes Math 1314 Week 6 Session Notes A few remaining examples from Lesson 7: 0.15 Example 17: The model Nt ( ) = 34.4(1 +.315 t) gives the number of people in the US who are between the ages of 45 and 55. Note,

More information

Study Guide - Part 1

Study Guide - Part 1 Math 116 Spring 2015 Study Guide - Part 1 1. Find the slope of a line that goes through the points (1, 5) and ( 3, 13). The slope is (A) Less than -1 (B) Between -1 and 1 (C) Between 1 and 3 (D) More than

More information

Final Exam Review. b) lim. 3. Find the limit, if it exists. If the limit is infinite, indicate whether it is + or. [Sec. 2.

Final Exam Review. b) lim. 3. Find the limit, if it exists. If the limit is infinite, indicate whether it is + or. [Sec. 2. Final Exam Review Math 42G 2x, x >. Graph f(x) = { 8 x, x Find the following limits. a) lim x f(x). Label at least four points. [Sec. 2.4, 2.] b) lim f(x) x + c) lim f(x) = Exist/DNE (Circle one) x 2,

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 2 JoungDong Kim Week 2: 4.1, 4.2, 4.3, 4.4, 4.5 Chapter 4 Rules for the Derivative Section 4.1 Derivatives of Powers, Exponents, and Sums Differentiation

More information

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5 Contents 0 Review: Lines, Fractions, Exponents 3 0.1 Lines................................... 3 0.2 Fractions................................ 4 0.3 Rules of exponents........................... 5 1 Functions

More information

Math 122 Calculus for Business Admin. and Social Sciences

Math 122 Calculus for Business Admin. and Social Sciences Math 122 Calculus for Business Admin. and Social Sciences Instructor: Ann Clifton Name: Exam #1 A July 3, 2018 Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes to complete

More information

Math 1130 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1130 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 0 Final Exam Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Provide an appropriate response. ) Solve: x - - x + 2 = x - 27 ) 2) Solve: (0-2x)(5

More information

Section 8.3 Compound Interest

Section 8.3 Compound Interest Section 8.3 Compound Interest Objectives 1. Use the compound interest formulas. 2. Calculate present value. 3. Understand and compute effective annual yield. 4/24/2013 Section 8.3 1 Compound interest is

More information

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding.

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding. 4.2 Exponential Functions Exponents and Properties Exponential Functions Exponential Equations Compound Interest The Number e and Continuous Compounding Exponential Models Section 4.3 Logarithmic Functions

More information

Algebra with Calculus for Business: Review (Summer of 07)

Algebra with Calculus for Business: Review (Summer of 07) Algebra with Calculus for Business: Review (Summer of 07) 1. Simplify (5 1 m 2 ) 3 (5m 2 ) 4. 2. Simplify (cd) 3 2 (c 3 ) 1 4 (d 1 4 ) 3. 3. Simplify (x 1 2 + y 1 2 )(x 1 2 y 1 2 ) 4. Solve the equation

More information

Instantaneous rate of change (IRC) at the point x Slope of tangent

Instantaneous rate of change (IRC) at the point x Slope of tangent CHAPTER 2: Differentiation Do not study Sections 2.1 to 2.3. 2.4 Rates of change Rate of change (RC) = Two types Average rate of change (ARC) over the interval [, ] Slope of the line segment Instantaneous

More information

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line?

1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? 1/20/2016 SAT Warm-Up 1. If x² - y² = 55, and x - y = 11, then y = 2. If the slope of a line is ½ and the y- intercept is 3, what is the x-intercept of the same line? Simple Interest = Pin where P = principal

More information

3.1 Exponential Functions and Their Graphs Date: Exponential Function

3.1 Exponential Functions and Their Graphs Date: Exponential Function 3.1 Exponential Functions and Their Graphs Date: Exponential Function Exponential Function: A function of the form f(x) = b x, where the b is a positive constant other than, and the exponent, x, is a variable.

More information

UNIVERSITY OF KWAZULU-NATAL

UNIVERSITY OF KWAZULU-NATAL UNIVERSITY OF KWAZULU-NATAL EXAMINATIONS: June 006 Subject, course and code: Mathematics 34 (MATH34P Duration: 3 hours Total Marks: 00 INTERNAL EXAMINERS: Mrs. A. Campbell, Mr. P. Horton, Dr. M. Banda

More information

MATH Intuitive Calculus Spring 2011 Circle one: 8:50 5:30 Ms. Kracht. Name: Score: /100. EXAM 2: Version A NO CALCULATORS.

MATH Intuitive Calculus Spring 2011 Circle one: 8:50 5:30 Ms. Kracht. Name: Score: /100. EXAM 2: Version A NO CALCULATORS. MATH 11012 Intuitive Calculus Spring 2011 Circle one: 8:50 5:30 Ms Kracht Name: Score: /100 110 pts available) EXAM 2: Version A NO CALCULATORS Multiple Choice: 10 questions at 3 points each Circle the

More information

MA 109 College Algebra EXAM 3 - REVIEW

MA 109 College Algebra EXAM 3 - REVIEW MA 9 College Algebra EXAM - REVIEW Name: Sec.:. In the picture below, the graph of = f(x) is the solid graph, and the graph of = g(x) is the dashed graph. Find a formula for g(x). 9 7 - -9 - -7 - - - -

More information

Functions - Compound Interest

Functions - Compound Interest 10.6 Functions - Compound Interest Objective: Calculate final account balances using the formulas for compound and continuous interest. An application of exponential functions is compound interest. When

More information

Logarithmic and Exponential Functions

Logarithmic and Exponential Functions Asymptotes and Intercepts Logarithmic and exponential functions have asymptotes and intercepts. Consider the functions f(x) = log ax and f(x) = lnx. Both have an x-intercept at (1, 0) and a vertical asymptote

More information

CHAPTER 3. Compound Interest

CHAPTER 3. Compound Interest CHAPTER 3 Compound Interest Recall What can you say to the amount of interest earned in simple interest? Do you know? An interest can also earn an interest? Compound Interest Whenever a simple interest

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assn.1-.3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) How long will it take for the value of an account to be $890 if $350 is deposited

More information

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski

BARUCH COLLEGE MATH 2205 SPRING MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski BARUCH COLLEGE MATH 05 SPRING 006 MANUAL FOR THE UNIFORM FINAL EXAMINATION Joseph Collison, Warren Gordon, Walter Wang, April Allen Materowski The final examination for Math 05 will consist of two parts.

More information

Math 1130 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Math 1130 Exam 2 Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1130 Exam 2 Review Provide an appropriate response. 1) Write the following in terms of ln x, ln(x - 3), and ln(x + 1): ln x 3 (x - 3)(x + 1) 2 1) 2) Write the following in terms of ln x, ln(x - 3),

More information

Exponential and Logarithmic Word Problems Notes

Exponential and Logarithmic Word Problems Notes Algebra 2 Name P S2[0G1c6C DKSuut^am ws]offptmwsa_rpen SLKLlCO.g N ZAql]ld crbijgehathst yr[ensfeurivsevdx. Exponential and Logarithmic Word Problems Notes Find the inverse of each function. Date Period

More information

Final Exam Review - Business Calculus - Spring x x

Final Exam Review - Business Calculus - Spring x x Final Exam Review - Business Calculus - Spring 2016 Name: 1. (a) Find limit lim x 1 x 1 x 1 (b) Find limit lim x 0 x + 2 4 x 1 2. Use the definition of derivative: dy dx = lim f(x + h) f(x) h 0 h Given

More information

4.7 Compound Interest

4.7 Compound Interest 4.7 Compound Interest 4.7 Compound Interest Objective: Determine the future value of a lump sum of money. 1 Simple Interest Formula: InterestI = Prt Principal interest rate time in years 2 A credit union

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

EXAM #2 Review. Spring Name: MATH 142, Drost Section # Seat #

EXAM #2 Review. Spring Name: MATH 142, Drost Section # Seat # Spring 2010 1 EXAM #2 Review Name: MATH 142, Drost Section # Seat # 1. Katy s Kitchen has a total cost function of C(x) = x + 25 to make x jars of jam, and C(x) is measured in dollars. The revenue in dollars,

More information

Mr. Orchard s Math 140 WIR Final Exam Review Week 14

Mr. Orchard s Math 140 WIR Final Exam Review Week 14 1. A construction company has allocated $1.92 million to buy new bulldozers, backhoes, and dumptrucks. Bulldozers cost $16,000 each, backhoes cost $24,000 each, and dumptrucks cost $32,000 each. The company

More information

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable.

f(u) can take on many forms. Several of these forms are presented in the following examples. dx, x is a variable. MATH 56: INTEGRATION USING u-du SUBSTITUTION: u-substitution and the Indefinite Integral: An antiderivative of a function f is a function F such that F (x) = f (x). Any two antiderivatives of f differ

More information

Percentage Change and Elasticity

Percentage Change and Elasticity ucsc supplementary notes math 105a Percentage Change and Elasticity 1. Relative and percentage rates of change The derivative of a differentiable function y = fx) describes how the function changes. The

More information

B) 2x3-5x D) 2x3 + 5x

B) 2x3-5x D) 2x3 + 5x Pre Calculus Final Review 2010 (April) Name Divide f(x) by d(x), and write a summary statement in the form indicated. 1) f x = x - 4; d x = x + 7 (Write answer in polynomial form) 1) A) f x = x + 7 x2-7x

More information

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes

BOSTON UNIVERSITY SCHOOL OF MANAGEMENT. Math Notes BOSTON UNIVERSITY SCHOOL OF MANAGEMENT Math Notes BU Note # 222-1 This note was prepared by Professor Michael Salinger and revised by Professor Shulamit Kahn. 1 I. Introduction This note discusses the

More information

You may be given raw data concerning costs and revenues. In that case, you ll need to start by finding functions to represent cost and revenue.

You may be given raw data concerning costs and revenues. In that case, you ll need to start by finding functions to represent cost and revenue. Example 2: Suppose a company can model its costs according to the function 3 2 Cx ( ) 0.000003x 0.04x 200x 70, 000 where Cxis ( ) given in dollars and demand can be modeled by p 0.02x 300. a. Find the

More information

Exam 2 Review (Sections Covered: and )

Exam 2 Review (Sections Covered: and ) Exam 2 Review (Sections Covered: 4.1-4.5 and 5.1-5.6) 1. Find the derivative of the following. (a) f(x) = 1 2 x6 3x 4 + 6e x (b) A(s) = s 1/2 ln s ln(13) (c) f(x) = 5e x 8 ln x 2. Given below is the price-demand

More information

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph

Graph A Graph B Graph C Graph D. t g(t) h(t) k(t) f(t) Graph MATH 119 Chapter 1 Test (Sample B ) NAME: 1) Each of the function in the following table is increasing or decreasing in different way. Which of the graphs below best fits each function Graph A Graph B

More information

Interest Compounded Annually. Table 3.27 Interest Computed Annually

Interest Compounded Annually. Table 3.27 Interest Computed Annually 33 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.6 Mathematics of Finance What you ll learn about Interest Compounded Annually Interest Compounded k Times per Year Interest Compounded Continuously

More information

MATH 1015 Final Exam Review Rev 02/2018

MATH 1015 Final Exam Review Rev 02/2018 MATH 1 Final Exam Review Rev 0/018 ============================================================================== 1)Find the domain and range for the function. 1) 3 1-7 - - - -3 - -1 1 3 7 - -3 - - - -7

More information

Daily Outcomes: I can evaluate, analyze, and graph exponential functions. Why might plotting the data on a graph be helpful in analyzing the data?

Daily Outcomes: I can evaluate, analyze, and graph exponential functions. Why might plotting the data on a graph be helpful in analyzing the data? 3 1 Exponential Functions Daily Outcomes: I can evaluate, analyze, and graph exponential functions Would the increase in water usage mirror the increase in population? Explain. Why might plotting the data

More information

Math 1324 Finite Mathematics Chapter 4 Finance

Math 1324 Finite Mathematics Chapter 4 Finance Math 1324 Finite Mathematics Chapter 4 Finance Simple Interest: Situation where interest is calculated on the original principal only. A = P(1 + rt) where A is I = Prt Ex: A bank pays simple interest at

More information

Logarithmic Functions and Simple Interest

Logarithmic Functions and Simple Interest Logarithmic Functions and Simple Interest Finite Math 10 February 2017 Finite Math Logarithmic Functions and Simple Interest 10 February 2017 1 / 9 Now You Try It! Section 2.6 - Logarithmic Functions Example

More information

1 Some review of percentages

1 Some review of percentages 1 Some review of percentages Recall that 5% =.05, 17% =.17, x% = x. When we say x% of y, we 100 mean the product x%)y). If a quantity A increases by 7%, then it s new value is }{{} P new value = }{{} A

More information

Chapter 5 Integration

Chapter 5 Integration Chapter 5 Integration Integration Anti differentiation: The Indefinite Integral Integration by Substitution The Definite Integral The Fundamental Theorem of Calculus 5.1 Anti differentiation: The Indefinite

More information

PRINTABLE VERSION. Practice Final Exam

PRINTABLE VERSION. Practice Final Exam Page 1 of 25 PRINTABLE VERSION Practice Final Exam Question 1 The following table of values gives a company's annual profits in millions of dollars. Rescale the data so that the year 2003 corresponds to

More information

Math Fall 2016 Final Exam December 10, Total 100

Math Fall 2016 Final Exam December 10, Total 100 Name: Math 111 - Fall 2016 Final Exam December 10, 2016 Section: Student ID Number: 1 15 2 13 3 14 4 15 5 13 6 15 7 15 Total 100 You are allowed to use a Ti-30x IIS Calculator (only this model!), a ruler,

More information

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e

Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5. THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.5 THE NUMBER e Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally The Natural Number

More information

Chapter 10: Exponential Functions

Chapter 10: Exponential Functions Chapter 10: Exponential Functions Lesson 1: Introduction to Exponential Functions and Equations Lesson 2: Exponential Graphs Lesson 3: Finding Equations of Exponential Functions Lesson 4: Exponential Growth

More information

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at:

Calculus for Business Economics Life Sciences and Social Sciences 13th Edition Barnett SOLUTIONS MANUAL Full download at: Calculus for Business Economics Life Sciences and Social Sciences 1th Edition Barnett TEST BANK Full download at: https://testbankreal.com/download/calculus-for-business-economics-life-sciencesand-social-sciences-1th-edition-barnett-test-bank/

More information

Final Study Guide MATH 111

Final Study Guide MATH 111 Final Study Guide MATH 111 The final will be cumulative. There will probably be a very slight emphasis on the material from the second half of the class. In terms of the material in the first half, please

More information

Chapter 3.4 Notes-Marginal Analysis and Economics. (1) Cost Functions

Chapter 3.4 Notes-Marginal Analysis and Economics. (1) Cost Functions Chapter 3.4 Notes-Marginal Analysis and Economics (1) Cost Functions (2) Revenue Functions (3) Profit Functions (4) Elasticity of Demand Marginal analysis is the study of the rate of change of economic

More information

Math 103 Sample Final

Math 103 Sample Final Math 103 Sample Final October 1, 007 These problems are a sample of the kinds of problems that may appear on the final exam. Some answers are included to indicate what is expected. Problems that require

More information

Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES

Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES Section 5.6: HISTORICAL AND EXPONENTIAL DEPRECIATION OBJECTIVES Write, interpret, and graph an exponential depreciation equation. Manipulate the exponential depreciation equation in order to determine

More information

2.6.3 Interest Rate 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS

2.6.3 Interest Rate 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS where price inflation p t/pt is subtracted from the growth rate of the value flow of production This is a general method for estimating the growth rate

More information

CHAPTER 8. Personal Finance. Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1

CHAPTER 8. Personal Finance. Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1 CHAPTER 8 Personal Finance Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 1 8.4 Compound Interest Copyright 2015, 2011, 2007 Pearson Education, Inc. Section 8.4, Slide 2 Objectives

More information

MATH 2070 Test 2 (Sections & )

MATH 2070 Test 2 (Sections & ) Multiple Choice: Use a #2 pencil and completely fill in each bubble on your scantron to indicate the answer to each question. Each question has one correct answer. If you indicate more than one answer,

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

March 08, LP10 apps.notebook. Warm Up. Solve for x: GRAB A PACKET FROM THE BACK!!

March 08, LP10 apps.notebook. Warm Up. Solve for x: GRAB A PACKET FROM THE BACK!! Warm Up Solve for x: GRAB A PACKET FROM THE BACK!! 1 Examples: Change of Base 1) Solve for x to the nearest hundredth: 2) If a $100 investment receives 5% interest each year, after how many years will

More information

The Theory of Interest

The Theory of Interest Chapter 1 The Theory of Interest One of the first types of investments that people learn about is some variation on the savings account. In exchange for the temporary use of an investor s money, a bank

More information

The Monthly Payment. ( ) ( ) n. P r M = r 12. k r. 12C, which must be rounded up to the next integer.

The Monthly Payment. ( ) ( ) n. P r M = r 12. k r. 12C, which must be rounded up to the next integer. MATH 116 Amortization One of the most useful arithmetic formulas in mathematics is the monthly payment for an amortized loan. Here are some standard questions that apply whenever you borrow money to buy

More information

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple 1. MAPLE Objective: After reading this chapter, you will solve mathematical problems using Maple 1.1 Maple Maple is an extremely powerful program, which can be used to work out many different types of

More information

CHAPTER 6. Exponential Functions

CHAPTER 6. Exponential Functions CHAPTER 6 Eponential Functions 6.1 EXPLORING THE CHARACTERISTICS OF EXPONENTIAL FUNCTIONS Chapter 6 EXPONENTIAL FUNCTIONS An eponential function is a function that has an in the eponent. Standard form:

More information

Mathematics (Project Maths Phase 2)

Mathematics (Project Maths Phase 2) L.17 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2013 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks For examiner Question 1 Centre stamp 2 3

More information

Homework #1 Microeconomics (I), Fall 2010 Due day: 7 th Oct., 2010

Homework #1 Microeconomics (I), Fall 2010 Due day: 7 th Oct., 2010 組別 姓名與學號 Homework #1 Microeconomics (I), Fall 2010 Due day: 7 th Oct., 2010 Part I. Multiple Choices: 60% (5% each) Please fill your answers in below blanks. 1 2 3 4 5 6 7 8 9 10 11 12 B A B C B C A D

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MGF 1107 Practice Final Dr. Schnackenberg MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Graph the equation. Select integers for x, -3 x 3. 1) y

More information

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x

Chap3a Introduction to Exponential Functions. Y = 2x + 4 Linear Increasing Slope = 2 y-intercept = (0,4) f(x) = 3(2) x Name Date HW Packet Lesson 3 Introduction to Exponential Functions HW Problem 1 In this problem, we look at the characteristics of Linear and Exponential Functions. Complete the table below. Function If

More information

Mathematics for Economists

Mathematics for Economists Department of Economics Mathematics for Economists Chapter 4 Mathematics of Finance Econ 506 Dr. Mohammad Zainal 4 Mathematics of Finance Compound Interest Annuities Amortization and Sinking Funds Arithmetic

More information

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.)

f ( x) a, where a 0 and a 1. (Variable is in the exponent. Base is a positive number other than 1.) MA 590 Notes, Lesson 9 Tetbook (calculus part) Section.4 Eponential Functions In an eponential function, the variable is in the eponent and the base is a positive constant (other than the number ). Eponential

More information

Market Demand Demand Elasticity Elasticity & Revenue Marginal Revenue. Market Demand Chapter 15

Market Demand Demand Elasticity Elasticity & Revenue Marginal Revenue. Market Demand Chapter 15 Market Demand Chapter 15 Outline Deriving market demand from individual demands How responsive is q d to a change in price? (elasticity) What is the relationship between revenue and demand elasticity?

More information

Foundational Preliminaries: Answers to Within-Chapter-Exercises

Foundational Preliminaries: Answers to Within-Chapter-Exercises C H A P T E R 0 Foundational Preliminaries: Answers to Within-Chapter-Exercises 0A Answers for Section A: Graphical Preliminaries Exercise 0A.1 Consider the set [0,1) which includes the point 0, all the

More information

1 Some review of percentages

1 Some review of percentages 1 Some review of percentages Recall that 5% =.05, 17% =.17, x% = x. When we say x% of y, we 100 mean the product (x%)(y). If a quantity A increases by 7%, then it s new value is }{{} P new value = }{{}

More information

1324 Exam 4 Review. C(x) = x

1324 Exam 4 Review. C(x) = x c Dr. Patrice Poage and Mrs. Reanna Carr, June 26, 2015 1 1324 Exam 4 Review NOTE: This review in and of itself does NOT prepare you for the test. You should be doing this review in addition to studying

More information

1 Maximizing profits when marginal costs are increasing

1 Maximizing profits when marginal costs are increasing BEE12 Basic Mathematical Economics Week 1, Lecture Tuesday 9.12.3 Profit maximization / Elasticity Dieter Balkenborg Department of Economics University of Exeter 1 Maximizing profits when marginal costs

More information

Name: CU ID#: Section #: Instructor s Name: Score:

Name: CU ID#: Section #: Instructor s Name: Score: Name: CU ID#: Section #: Instructor s Name: Score: General Directions: Show work where possible. Answers without supporting work (where work is appropriate) may receive little credit. Do not round intermediate

More information

Mathematics for Business and Economics - Fall 2015

Mathematics for Business and Economics - Fall 2015 NAME: Mathematics for Business and Economics - Fall 2015 Final Exam, December 14, 2015 In all non-multiple choice problems you are required to show all your work and provide the necessary explanations

More information

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table.

SA2 Unit 4 Investigating Exponentials in Context Classwork A. Double Your Money. 2. Let x be the number of assignments completed. Complete the table. Double Your Money Your math teacher believes that doing assignments consistently will improve your understanding and success in mathematics. At the beginning of the year, your parents tried to encourage

More information

The Theory of Interest

The Theory of Interest Chapter 1 The Theory of Interest One of the first types of investments that people learn about is some variation on the savings account. In exchange for the temporary use of an investor's money, a bank

More information

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money.

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Simple and compound interest NAME: These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Principal: initial amount you borrow;

More information

Exponential & Logarithmic

Exponential & Logarithmic Exponential & Logarithmic Frank C. Wilson Functions I by file Activity Collection m Credit Card Balance Transfer DVD Player Sales Government Employee Salaries Living Longer Low Interest or Cash Back Shopping

More information

Annuities and Income Streams

Annuities and Income Streams Annuities and Income Streams MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Summer 212 Objectives After completing this lesson we will be able to: determine the value of

More information

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify.

2. Find the marginal profit if a profit function is (2x 2 4x + 4)e 4x and simplify. Additional Review Exam 2 MATH 2053 The only formula that will be provided is for economic lot size (section 12.3) as announced in class, no WebWork questions were given on this. km q = 2a Please note not

More information

UNIT 11 STUDY GUIDE. Key Features of the graph of

UNIT 11 STUDY GUIDE. Key Features of the graph of UNIT 11 STUDY GUIDE Key Features of the graph of Exponential functions in the form The graphs all cross the y-axis at (0, 1) The x-axis is an asymptote. Equation of the asymptote is y=0 Domain: Range:

More information

Math Winter 2014 Exam 1 January 30, PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50

Math Winter 2014 Exam 1 January 30, PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50 Name: Math 112 - Winter 2014 Exam 1 January 30, 2014 Section: Student ID Number: PAGE 1 13 PAGE 2 11 PAGE 3 12 PAGE 4 14 Total 50 After this cover page, there are 5 problems spanning 4 pages. Please make

More information

Math 2 Variable Manipulation Part 8 Forms and Uses of Exponential Functions

Math 2 Variable Manipulation Part 8 Forms and Uses of Exponential Functions Math 2 Variable Manipulation Part 8 Forms and Uses of Exponential Functions 1 MONEY AND INTEREST An exponential function is a function of the form f(x) = ab x where a and b are constants and a 0, b > 0,

More information

Chapter 3 Mathematics of Finance

Chapter 3 Mathematics of Finance Chapter 3 Mathematics of Finance Section 2 Compound and Continuous Interest Learning Objectives for Section 3.2 Compound and Continuous Compound Interest The student will be able to compute compound and

More information

6.1 Simple Interest page 243

6.1 Simple Interest page 243 page 242 6 Students learn about finance as it applies to their daily lives. Two of the most important types of financial decisions for many people involve either buying a house or saving for retirement.

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs November 27, 2018 Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth

More information

Answers are on next slide. Graphs follow.

Answers are on next slide. Graphs follow. Sec 3.1 Exponential Functions and Their Graphs Exponential Function - the independent variable is in the exponent. Model situations with constant percentage change exponential growth exponential decay

More information