Microsoft Morgan Stanley Finance Contest Final Report

Size: px
Start display at page:

Download "Microsoft Morgan Stanley Finance Contest Final Report"

Transcription

1 Microsoft Morgan Stanley Finance Contest Final Report Endeavor Team 2011/10/28 1. Introduction In this project, we intend to design an efficient framework that can estimate the price of options. The price of the options is of great importance for option investors. Based on our assumptions, if the price of the option estimated is more valuable, it is more likely to have a tidy profit from it. The economic module we used in the framework is well-known Monte Carlo module. And as we know, there are various types of options including Asian options, knock-in or knock-out options, and lookback options. Although these options are somewhat different in definition, during computing the price, the module and the method used are similar so that a well-designed program can reduce most redundancy. The rest of our paper is organized as follows. In Section 2, we introduce the algorithm we use, and our improvement of the classical algorithm. Section 3 shows the implement of the algorithm which is divided as the server and client part, and by utilizing the polymorphism of C#, the codes are more brief and readable. The risk assessment is listed in Section 4, and the way to choose options according to the prices estimated is given. Section 5 gives the parallel performance of our test. Finally, we conclude our experience in this contest. 2. Algorithm 2.1 Monte Carlo Method In mathematical finance, a Monte Carlo option model uses Monte Carlo methods to calculate the value of an option with multiple sources of uncertainty or with complicated features. In terms of theory, Monte Carlo valuation relies on risk neutral valuation. The price of the option is its discounted expected value; see risk neutrality and Rational pricing: Risk Neutral Valuation.

2 The technique applied then, is (1) to generate several thousand possible (but random) price paths for the underlying via simulation, and (2) to then calculate the associated exercise value (i.e. "payoff") of the option for each path. (3) These payoffs are then averaged and (4) discounted to today. This result is the value of the option. An option on equity may be modelled with one source of uncertainty: the price of the underlying stock in question. Here the price of the underlying instrument is usually modelled such that it follows a geometric Brownian motion with constant drift and volatility. So, where is found via a random sampling from a normal distribution; see further under Black-Scholes. (Since the underlying random process is the same, for enough price paths, the value of a european option here should be the same as under Black Scholes). Simulation can similarly be used to value options where the payoff depends on the value of multiple underlying assets such as a Basket option or Rainbow option. Here, correlation between assets is likewise incorporated. As can be seen, Monte Carlo Methods are particularly useful in the valuation of options with multiple sources of uncertainty or with complicated features, which would make them difficult to value through a straightforward Black-Scholes-style or lattice based computation. The technique is thus widely used in valuing path dependent structures like lookback and Asian options and in real options analysis. Additionally, as above, the model is not limited as to the probability distribution assumed. 2.2 The method of simulation of Brownian motion Initial Method Figure 1 gives the method of simulation of geometric Brownian motion by the binomial model. S p S u p = erδt d u d (1) u = e σ Δt (2) 1-p S d d = e σ Δt (3) Figure 1 Binomial Model

3 We can see, when the random number is bigger than p we get a new price S u, others we get S d. And from formulation (1), (2), (3), we see that when Δt is infinitely small, and n is infinitely large, the simulation is similar to the geometric Brownian motion Improved Method The initial method of simulation has a disadvantage that the value calculated by each step is discrete (e.g. we do 100 step but get 101 discrete values). So when n is not large enough, we cannot simulate geometric Brownian motion well. To overcome this shortage, we think a better version. First Step: We use 12 uniform distribution of 0-1 to generate a standard normal distribution value. Let ε 1, ε 2,, ε n, be independent, and each of them is meets [0, 1] uniformly distribution, so ε 1 + ε ε n can be considered as normal variables. Generally, we take a small n that can meet requirement. In the Monte Carlo method, we take n as 12 in normal cases. And use the following formula to get a new random number sequence. 12 η k = i=1 ε 12(k 1)+i 6, k = 1,2, (4) Where η k is a random number in the normal distribution, and ε 12(k 1)+i is a random number which subjects to a 0-1 uniform distribution. The code is implemented as Figure 2. public double gaussdistribution(random rand) { double sum = 0; for (int i = 0; i < 12; i++) sum += rand.nextdouble(); return sum - 6.0; Figure 2 Gaussian distribution generated by 0-1 uniform distribution Second Step: We map the standard normal distribution to a log normal distribution (i.e. geometric Brownian motion) as the following formulation:

4 S(t + Δt) = S(t)e [(μ 1 2 σ2 )t+ση Δt ] (5) Where every S (t + Δt) is a continuous variable, rather than a discrete binomial value in binomial model. The code is implemented as Figure 3. public double nextprice(double curprice, Random rand, double sigma, double interest, double deltat) { return Math.Exp(deltaT * (interest * Math.Pow(sigma, 2)) + sigma * Math.Pow(deltaT, 0.5) * gaussdistribution(rand)); 3. Implement Figure 3 Simulation of geometric Brownian motion 3.1 Server Design As there are many types of options which have similar way to compute the prices, it is instinctive to build a parent class and all the real options inherit from the parent class. The most critical and the only diverse function of the framework is to compute the price of the option, which can be overridden by the child classed. By doing this, the polymorphism of the object-oriented language can be fully utilized and lots of redundancy can be reduced. The class diagram of our design is as shown in Figure 1. The variables that decide the types of the options should be paid attention to. When typeid is 1, it is an Asian Option. The price of the option is computed by the average price from buying the option to expiry. When typeid is 2, it is a knock-in or knock-out option. This kind of option is valid or invalid once the price reaches some threshold. Otherchoice in this type determine which one it is. When typeid is 3, it is a lookback option. The price is computed according to the maximum or minimum of the price. Another four variables that decide the computation diversity are iscall, isfixed, isup and isaverage, which record whether the option is a call, fixed, up (if it is knock-in or knock-out option) option and whether arithmetic average of geometric average should be used.

5 BasedOptions #typeid : int #daynum : int #interest : double #initial : double #exercise : double #up : double #down : double #deltat : double #threshold : double #iscall : bool #isfixed : bool #isup : bool #isaverage : int #otherchoice : int #var : double #brownapproximethod : int #sigma : double +BasedOptions() +compute_price() : double +Log() +gaussdistribution() : double +nextprice() : double AsianOption KnockInOutOption LookBackOption +AsianOption() +compute_price() : double +KnockInOutOption() +compute_price() : double +LookBackOption() +compute_price() : double Figure 4. Class diagram of the server design The only function we overridden is the critical one, compute_price(), where somewhat different computation of various options is implemented. Then, the interface exposed to the client only needs one function, where 3 steps are needed. First, according to the typeid, create the corresponding instance. Then, invoke the compute_price() function of instance. public double ComputeOption(int typeid ){ BasedOptions op; switch(typeid){ case 1: op = new AsianOption(typeId, daynum, ); break; return op.compute_price(runs, periods, clientid); Figure 5. Pseudo code of the function exposed to client

6 3.2 Client Design Since server has encapsulate the function we should use, so in the client, the major work is to create the session, read the data, send request to the server, and get the response. Once the client send request to the server, the server will invoke the ComputeOpiton function and compute the price. Here, we support continuously process several options. Meanwhile, to utilize the multi cores on the server, for every option, we send clientnum requests, and each request processes part of the total runs and works on a unique core. In reduceoptionprice, the prices from all the cores are collected and the function computes the final price. The process is similar to famous map-reduce process. Main: CreateSession path[0] path[1]= ; using(new client()){ for (int optionsid = 0; optionsid < OptionsNum; optionsid++){ readdata(path[optionsid]); mapoptionsprice(session, client, optionsid); client.endrequests(); using(new client()){ for (int optionsid = 0; optionsid < OptionsNum; optionsid++){ reduceoptionsprice(client, optionsid); session.close(); mapoptionsprice: Send Request to Server for (int clientid = 0; clientid < ClientNum; clientid++){ ComputeOptionRequest request = new ComputeOptionRequest( ); client.sendrequest<computeoptionrequest>(request, ctx); reduceoptionsprice: Get response from server foreach (BrokerResponse<ComputeOptionResponse> response in client.getresponses<computeoptionresponse>()){ price += response.result.computeoptionresult; price = price/clientnum; Figure 6. Pseudo code of client

7 log(n) Today we have done two things. First is to reconstruct the codes. Second is to use a new approach to measure the risk of options. We call it variance normalization method. 4. Risk Assessment On the first day of this contest, we considered little about the risk of options and just evaluate an option by the theoretical expectation payoff. However, when our team analyzed the first day data, we discovered that some high fair value options also accompanied with high risk (such as option B2). So we attempted to find some data which can describe the risk of Options. On the second day, we use the sample variance to describe the risk. At each run of the Monte Carlo method, we can get a fair value of a specific path. So we collected the samples and calculated the degree of dispersion. This is an intuitive idea, because the more discrete of the fair value the more uncertainty of the result. People are always risk aversion, so the uncertainty is the negative impact of the options. But the results are not satisfactory, because the sample variance not only describes the uncertainty of the fair value but also affected by the price of premium. So it's hard to use this parameter to describe the uncertainty of two different options. On fourth day, we improved our approach based on the sample variance method. And we call it variance normalization method. We first normalized the sample fair value by the expectation fair value and then calculate the variance with the normalized data. This method can eliminate the effects of the premium price. Figure 1 is the statistical result of Monte Carlo algorithm which runs 15 million times. Standard Deviation is , so the risk is less fair value - premium Figure 4 Product A-1 in Day 4 Standard Deviation

8 Time(secs) log(n) Figure 5 gives Product A-2 in Day 4 Standard Deviation, and the standard deviation is , so there is more risk in A fair value - premium Figure 5 Product A-2 in Day 4 Standard Deviation 5. Parallel Performance In this contest, parallel programing contest, parallel performance is a key point of the final result. So, we make some tests to get a best parameter of our algorithm. As Figure 6 shows, because the limits of cores we can use, more request per loop does not get more efficient work. And 32 request every loop gets the least time, so we choose this parameter Core Number Figure 6 Parallel Number of Time Table More parameters is listed in Figure 7.

9 Number of request 32 Number of total runs Number of every cores runs 1000 Figure 7 More Parameters 6. Conclude Thanks for the finance contest held improvement by Microsoft and Morgan Stanley, we learned lots of options information and technology of parallel programming these days. We conclude our experience of the contest day as following. Day1: not included risk Assessment. Day2: assess the risk by the variance, but the drawback is that the variance is affected by the mean (i.e. the higher the option price, the greater the variance). Day3: Normalize variance to evaluate the risk. This method solve the above shortage. The specific method is that every sample is divided by the expected first, which makes the expected value to 1, and then get the variance of the processed data. ( x i i=1 E(x) 1)2 N 1 N (6) Day4: Reconstruct our code and make it more readable. Day5: Write the final report, and conclude our experience in this contest.

Computational Finance

Computational Finance Path Dependent Options Computational Finance School of Mathematics 2018 The Random Walk One of the main assumption of the Black-Scholes framework is that the underlying stock price follows a random walk

More information

Computational Finance Improving Monte Carlo

Computational Finance Improving Monte Carlo Computational Finance Improving Monte Carlo School of Mathematics 2018 Monte Carlo so far... Simple to program and to understand Convergence is slow, extrapolation impossible. Forward looking method ideal

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Monte Carlo Methods in Structuring and Derivatives Pricing

Monte Carlo Methods in Structuring and Derivatives Pricing Monte Carlo Methods in Structuring and Derivatives Pricing Prof. Manuela Pedio (guest) 20263 Advanced Tools for Risk Management and Pricing Spring 2017 Outline and objectives The basic Monte Carlo algorithm

More information

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS

EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Commun. Korean Math. Soc. 23 (2008), No. 2, pp. 285 294 EFFICIENT MONTE CARLO ALGORITHM FOR PRICING BARRIER OPTIONS Kyoung-Sook Moon Reprinted from the Communications of the Korean Mathematical Society

More information

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron

The Merton Model. A Structural Approach to Default Prediction. Agenda. Idea. Merton Model. The iterative approach. Example: Enron The Merton Model A Structural Approach to Default Prediction Agenda Idea Merton Model The iterative approach Example: Enron A solution using equity values and equity volatility Example: Enron 2 1 Idea

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

FINANCIAL OPTION ANALYSIS HANDOUTS

FINANCIAL OPTION ANALYSIS HANDOUTS FINANCIAL OPTION ANALYSIS HANDOUTS 1 2 FAIR PRICING There is a market for an object called S. The prevailing price today is S 0 = 100. At this price the object S can be bought or sold by anyone for any

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Fall 2017 Computer Exercise 2 Simulation This lab deals with pricing

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

1 The continuous time limit

1 The continuous time limit Derivative Securities, Courant Institute, Fall 2008 http://www.math.nyu.edu/faculty/goodman/teaching/derivsec08/index.html Jonathan Goodman and Keith Lewis Supplementary notes and comments, Section 3 1

More information

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO

The Pennsylvania State University. The Graduate School. Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO The Pennsylvania State University The Graduate School Department of Industrial Engineering AMERICAN-ASIAN OPTION PRICING BASED ON MONTE CARLO SIMULATION METHOD A Thesis in Industrial Engineering and Operations

More information

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print):

MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, Student Name (print): MATH4143 Page 1 of 17 Winter 2007 MATH4143: Scientific Computations for Finance Applications Final exam Time: 9:00 am - 12:00 noon, April 18, 2007 Student Name (print): Student Signature: Student ID: Question

More information

Accelerated Option Pricing Multiple Scenarios

Accelerated Option Pricing Multiple Scenarios Accelerated Option Pricing in Multiple Scenarios 04.07.2008 Stefan Dirnstorfer (stefan@thetaris.com) Andreas J. Grau (grau@thetaris.com) 1 Abstract This paper covers a massive acceleration of Monte-Carlo

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Financial Models with Levy Processes and Volatility Clustering

Financial Models with Levy Processes and Volatility Clustering Financial Models with Levy Processes and Volatility Clustering SVETLOZAR T. RACHEV # YOUNG SHIN ICIM MICHELE LEONARDO BIANCHI* FRANK J. FABOZZI WILEY John Wiley & Sons, Inc. Contents Preface About the

More information

CFE: Level 1 Exam Sample Questions

CFE: Level 1 Exam Sample Questions CFE: Level 1 Exam Sample Questions he following are the sample questions that are illustrative of the questions that may be asked in a CFE Level 1 examination. hese questions are only for illustration.

More information

Hull, Options, Futures & Other Derivatives Exotic Options

Hull, Options, Futures & Other Derivatives Exotic Options P1.T3. Financial Markets & Products Hull, Options, Futures & Other Derivatives Exotic Options Bionic Turtle FRM Video Tutorials By David Harper, CFA FRM 1 Exotic Options Define and contrast exotic derivatives

More information

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc.

ASC Topic 718 Accounting Valuation Report. Company ABC, Inc. ASC Topic 718 Accounting Valuation Report Company ABC, Inc. Monte-Carlo Simulation Valuation of Several Proposed Relative Total Shareholder Return TSR Component Rank Grants And Index Outperform Grants

More information

Value at Risk Ch.12. PAK Study Manual

Value at Risk Ch.12. PAK Study Manual Value at Risk Ch.12 Related Learning Objectives 3a) Apply and construct risk metrics to quantify major types of risk exposure such as market risk, credit risk, liquidity risk, regulatory risk etc., and

More information

Handbook of Financial Risk Management

Handbook of Financial Risk Management Handbook of Financial Risk Management Simulations and Case Studies N.H. Chan H.Y. Wong The Chinese University of Hong Kong WILEY Contents Preface xi 1 An Introduction to Excel VBA 1 1.1 How to Start Excel

More information

The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices

The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices 1 The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices Jean-Yves Datey Comission Scolaire de Montréal, Canada Geneviève Gauthier HEC Montréal, Canada Jean-Guy

More information

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13

Valuing Stock Options: The Black-Scholes-Merton Model. Chapter 13 Valuing Stock Options: The Black-Scholes-Merton Model Chapter 13 1 The Black-Scholes-Merton Random Walk Assumption l Consider a stock whose price is S l In a short period of time of length t the return

More information

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t

- 1 - **** d(lns) = (µ (1/2)σ 2 )dt + σdw t - 1 - **** These answers indicate the solutions to the 2014 exam questions. Obviously you should plot graphs where I have simply described the key features. It is important when plotting graphs to label

More information

Pricing Asian Options

Pricing Asian Options Pricing Asian Options Maplesoft, a division of Waterloo Maple Inc., 24 Introduction his worksheet demonstrates the use of Maple for computing the price of an Asian option, a derivative security that has

More information

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA

Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Financial Risk Modeling on Low-power Accelerators: Experimental Performance Evaluation of TK1 with FPGA Rajesh Bordawekar and Daniel Beece IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation

More information

Monte Carlo Simulations

Monte Carlo Simulations Monte Carlo Simulations Lecture 1 December 7, 2014 Outline Monte Carlo Methods Monte Carlo methods simulate the random behavior underlying the financial models Remember: When pricing you must simulate

More information

Math 239 Homework 1 solutions

Math 239 Homework 1 solutions Math 239 Homework 1 solutions Question 1. Delta hedging simulation. (a) Means, standard deviations and histograms are found using HW1Q1a.m with 100,000 paths. In the case of weekly rebalancing: mean =

More information

Market Volatility and Risk Proxies

Market Volatility and Risk Proxies Market Volatility and Risk Proxies... an introduction to the concepts 019 Gary R. Evans. This slide set by Gary R. Evans is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

More information

Computer Exercise 2 Simulation

Computer Exercise 2 Simulation Lund University with Lund Institute of Technology Valuation of Derivative Assets Centre for Mathematical Sciences, Mathematical Statistics Spring 2010 Computer Exercise 2 Simulation This lab deals with

More information

The histogram should resemble the uniform density, the mean should be close to 0.5, and the standard deviation should be close to 1/ 12 =

The histogram should resemble the uniform density, the mean should be close to 0.5, and the standard deviation should be close to 1/ 12 = Chapter 19 Monte Carlo Valuation Question 19.1 The histogram should resemble the uniform density, the mean should be close to.5, and the standard deviation should be close to 1/ 1 =.887. Question 19. The

More information

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying

2 f. f t S 2. Delta measures the sensitivityof the portfolio value to changes in the price of the underlying Sensitivity analysis Simulating the Greeks Meet the Greeks he value of a derivative on a single underlying asset depends upon the current asset price S and its volatility Σ, the risk-free interest rate

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

RISK MANAGEMENT IN PUBLIC-PRIVATE PARTNERSHIP ROAD PROJECTS USING THE REAL OPTIONS THEORY

RISK MANAGEMENT IN PUBLIC-PRIVATE PARTNERSHIP ROAD PROJECTS USING THE REAL OPTIONS THEORY I International Symposium Engineering Management And Competitiveness 20 (EMC20) June 24-25, 20, Zrenjanin, Serbia RISK MANAGEMENT IN PUBLIC-PRIVATE PARTNERSHIP ROAD PROJECTS USING THE REAL OPTIONS THEORY

More information

Monte Carlo Simulation of Stochastic Processes

Monte Carlo Simulation of Stochastic Processes Monte Carlo Simulation of Stochastic Processes Last update: January 10th, 2004. In this section is presented the steps to perform the simulation of the main stochastic processes used in real options applications,

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/33 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/33 Outline The Binomial Lattice Model (BLM) as a Model

More information

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should

Mathematics of Finance Final Preparation December 19. To be thoroughly prepared for the final exam, you should Mathematics of Finance Final Preparation December 19 To be thoroughly prepared for the final exam, you should 1. know how to do the homework problems. 2. be able to provide (correct and complete!) definitions

More information

Preface Objectives and Audience

Preface Objectives and Audience Objectives and Audience In the past three decades, we have witnessed the phenomenal growth in the trading of financial derivatives and structured products in the financial markets around the globe and

More information

MFE/3F Questions Answer Key

MFE/3F Questions Answer Key MFE/3F Questions Download free full solutions from www.actuarialbrew.com, or purchase a hard copy from www.actexmadriver.com, or www.actuarialbookstore.com. Chapter 1 Put-Call Parity and Replication 1.01

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Risk Neutral Valuation, the Black-

Risk Neutral Valuation, the Black- Risk Neutral Valuation, the Black- Scholes Model and Monte Carlo Stephen M Schaefer London Business School Credit Risk Elective Summer 01 C = SN( d )-PV( X ) N( ) N he Black-Scholes formula 1 d (.) : cumulative

More information

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics

DRAFT. 1 exercise in state (S, t), π(s, t) = 0 do not exercise in state (S, t) Review of the Risk Neutral Stock Dynamics Chapter 12 American Put Option Recall that the American option has strike K and maturity T and gives the holder the right to exercise at any time in [0, T ]. The American option is not straightforward

More information

Valuing Early Stage Investments with Market Related Timing Risk

Valuing Early Stage Investments with Market Related Timing Risk Valuing Early Stage Investments with Market Related Timing Risk Matt Davison and Yuri Lawryshyn February 12, 216 Abstract In this work, we build on a previous real options approach that utilizes managerial

More information

Barrier Option. 2 of 33 3/13/2014

Barrier Option. 2 of 33 3/13/2014 FPGA-based Reconfigurable Computing for Pricing Multi-Asset Barrier Options RAHUL SRIDHARAN, GEORGE COOKE, KENNETH HILL, HERMAN LAM, ALAN GEORGE, SAAHPC '12, PROCEEDINGS OF THE 2012 SYMPOSIUM ON APPLICATION

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier

AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Academic Press is an Imprint of Elsevier Computational Finance Using C and C# Derivatives and Valuation SECOND EDITION George Levy ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

More information

Valuation of Asian Option. Qi An Jingjing Guo

Valuation of Asian Option. Qi An Jingjing Guo Valuation of Asian Option Qi An Jingjing Guo CONTENT Asian option Pricing Monte Carlo simulation Conclusion ASIAN OPTION Definition of Asian option always emphasizes the gist that the payoff depends on

More information

Computational Finance. Computational Finance p. 1

Computational Finance. Computational Finance p. 1 Computational Finance Computational Finance p. 1 Outline Binomial model: option pricing and optimal investment Monte Carlo techniques for pricing of options pricing of non-standard options improving accuracy

More information

Quasi-Monte Carlo for Finance

Quasi-Monte Carlo for Finance Quasi-Monte Carlo for Finance Peter Kritzer Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences Linz, Austria NCTS, Taipei, November 2016 Peter Kritzer

More information

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods

Math Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods . Math 623 - Computational Finance Double barrier option pricing using Quasi Monte Carlo and Brownian Bridge methods Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department

More information

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1

Asian Option Pricing: Monte Carlo Control Variate. A discrete arithmetic Asian call option has the payoff. S T i N N + 1 Asian Option Pricing: Monte Carlo Control Variate A discrete arithmetic Asian call option has the payoff ( 1 N N + 1 i=0 S T i N K ) + A discrete geometric Asian call option has the payoff [ N i=0 S T

More information

Trading Volatility Using Options: a French Case

Trading Volatility Using Options: a French Case Trading Volatility Using Options: a French Case Introduction Volatility is a key feature of financial markets. It is commonly used as a measure for risk and is a common an indicator of the investors fear

More information

ELEMENTS OF MONTE CARLO SIMULATION

ELEMENTS OF MONTE CARLO SIMULATION APPENDIX B ELEMENTS OF MONTE CARLO SIMULATION B. GENERAL CONCEPT The basic idea of Monte Carlo simulation is to create a series of experimental samples using a random number sequence. According to the

More information

Zekuang Tan. January, 2018 Working Paper No

Zekuang Tan. January, 2018 Working Paper No RBC LiONS S&P 500 Buffered Protection Securities (USD) Series 4 Analysis Option Pricing Analysis, Issuing Company Riskhedging Analysis, and Recommended Investment Strategy Zekuang Tan January, 2018 Working

More information

The Binomial Lattice Model for Stocks: Introduction to Option Pricing

The Binomial Lattice Model for Stocks: Introduction to Option Pricing 1/27 The Binomial Lattice Model for Stocks: Introduction to Option Pricing Professor Karl Sigman Columbia University Dept. IEOR New York City USA 2/27 Outline The Binomial Lattice Model (BLM) as a Model

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping

Math Computational Finance Option pricing using Brownian bridge and Stratified samlping . Math 623 - Computational Finance Option pricing using Brownian bridge and Stratified samlping Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics,

More information

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r.

Lecture 17. The model is parametrized by the time period, δt, and three fixed constant parameters, v, σ and the riskless rate r. Lecture 7 Overture to continuous models Before rigorously deriving the acclaimed Black-Scholes pricing formula for the value of a European option, we developed a substantial body of material, in continuous

More information

Assicurazioni Generali: An Option Pricing Case with NAGARCH

Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: An Option Pricing Case with NAGARCH Assicurazioni Generali: Business Snapshot Find our latest analyses and trade ideas on bsic.it Assicurazioni Generali SpA is an Italy-based insurance

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2.

******************************* The multi-period binomial model generalizes the single-period binomial model we considered in Section 2. Derivative Securities Multiperiod Binomial Trees. We turn to the valuation of derivative securities in a time-dependent setting. We focus for now on multi-period binomial models, i.e. binomial trees. This

More information

Results for option pricing

Results for option pricing Results for option pricing [o,v,b]=optimal(rand(1,100000 Estimators = 0.4619 0.4617 0.4618 0.4613 0.4619 o = 0.46151 % best linear combination (true value=0.46150 v = 1.1183e-005 %variance per uniform

More information

Rapid computation of prices and deltas of nth to default swaps in the Li Model

Rapid computation of prices and deltas of nth to default swaps in the Li Model Rapid computation of prices and deltas of nth to default swaps in the Li Model Mark Joshi, Dherminder Kainth QUARC RBS Group Risk Management Summary Basic description of an nth to default swap Introduction

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J Math Anal Appl 389 (01 968 978 Contents lists available at SciVerse Scienceirect Journal of Mathematical Analysis and Applications wwwelseviercom/locate/jmaa Cross a barrier to reach barrier options

More information

Exotic Derivatives & Structured Products. Zénó Farkas (MSCI)

Exotic Derivatives & Structured Products. Zénó Farkas (MSCI) Exotic Derivatives & Structured Products Zénó Farkas (MSCI) Part 1: Exotic Derivatives Over the counter products Generally more profitable (and more risky) than vanilla derivatives Why do they exist? Possible

More information

Fin285a:Computer Simulations and Risk Assessment Section Options and Partial Risk Hedges Reading: Hilpisch,

Fin285a:Computer Simulations and Risk Assessment Section Options and Partial Risk Hedges Reading: Hilpisch, Fin285a:Computer Simulations and Risk Assessment Section 9.1-9.2 Options and Partial Risk Hedges Reading: Hilpisch, 290-294 Option valuation: Analytic Black/Scholes function Option valuation: Monte-carlo

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Option Valuation (Lattice)

Option Valuation (Lattice) Page 1 Option Valuation (Lattice) Richard de Neufville Professor of Systems Engineering and of Civil and Environmental Engineering MIT Massachusetts Institute of Technology Option Valuation (Lattice) Slide

More information

Appendix: Basics of Options and Option Pricing Option Payoffs

Appendix: Basics of Options and Option Pricing Option Payoffs Appendix: Basics of Options and Option Pricing An option provides the holder with the right to buy or sell a specified quantity of an underlying asset at a fixed price (called a strike price or an exercise

More information

Modeling via Stochastic Processes in Finance

Modeling via Stochastic Processes in Finance Modeling via Stochastic Processes in Finance Dimbinirina Ramarimbahoaka Department of Mathematics and Statistics University of Calgary AMAT 621 - Fall 2012 October 15, 2012 Question: What are appropriate

More information

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus

Institute of Actuaries of India. Subject. ST6 Finance and Investment B. For 2018 Examinationspecialist Technical B. Syllabus Institute of Actuaries of India Subject ST6 Finance and Investment B For 2018 Examinationspecialist Technical B Syllabus Aim The aim of the second finance and investment technical subject is to instil

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Binomial model: numerical algorithm

Binomial model: numerical algorithm Binomial model: numerical algorithm S / 0 C \ 0 S0 u / C \ 1,1 S0 d / S u 0 /, S u 3 0 / 3,3 C \ S0 u d /,1 S u 5 0 4 0 / C 5 5,5 max X S0 u,0 S u C \ 4 4,4 C \ 3 S u d / 0 3, C \ S u d 0 S u d 0 / C 4

More information

MFIN 7003 Module 2. Mathematical Techniques in Finance. Sessions B&C: Oct 12, 2015 Nov 28, 2015

MFIN 7003 Module 2. Mathematical Techniques in Finance. Sessions B&C: Oct 12, 2015 Nov 28, 2015 MFIN 7003 Module 2 Mathematical Techniques in Finance Sessions B&C: Oct 12, 2015 Nov 28, 2015 Instructor: Dr. Rujing Meng Room 922, K. K. Leung Building School of Economics and Finance The University of

More information

3. Monte Carlo Simulation

3. Monte Carlo Simulation 3. Monte Carlo Simulation 3.7 Variance Reduction Techniques Math443 W08, HM Zhu Variance Reduction Procedures (Chap 4.5., 4.5.3, Brandimarte) Usually, a very large value of M is needed to estimate V with

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

Two Types of Options

Two Types of Options FIN 673 Binomial Option Pricing Professor Robert B.H. Hauswald Kogod School of Business, AU Two Types of Options An option gives the holder the right, but not the obligation, to buy or sell a given quantity

More information

Option Pricing. Chapter Discrete Time

Option Pricing. Chapter Discrete Time Chapter 7 Option Pricing 7.1 Discrete Time In the next section we will discuss the Black Scholes formula. To prepare for that, we will consider the much simpler problem of pricing options when there are

More information

Mobility for the Future:

Mobility for the Future: Mobility for the Future: Cambridge Municipal Vehicle Fleet Options FINAL APPLICATION PORTFOLIO REPORT Christopher Evans December 12, 2006 Executive Summary The Public Works Department of the City of Cambridge

More information

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks

Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor Information. Class Information. Catalog Description. Textbooks Instructor Information Financial Engineering MRM 8610 Spring 2015 (CRN 12477) Instructor: Daniel Bauer Office: Room 1126, Robinson College of Business (35 Broad Street) Office Hours: By appointment (just

More information

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS

MATH3075/3975 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS MATH307/37 FINANCIAL MATHEMATICS TUTORIAL PROBLEMS School of Mathematics and Statistics Semester, 04 Tutorial problems should be used to test your mathematical skills and understanding of the lecture material.

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

MFE Course Details. Financial Mathematics & Statistics

MFE Course Details. Financial Mathematics & Statistics MFE Course Details Financial Mathematics & Statistics FE8506 Calculus & Linear Algebra This course covers mathematical tools and concepts for solving problems in financial engineering. It will also help

More information

Introduction to Algorithmic Trading Strategies Lecture 8

Introduction to Algorithmic Trading Strategies Lecture 8 Introduction to Algorithmic Trading Strategies Lecture 8 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

"Vibrato" Monte Carlo evaluation of Greeks

Vibrato Monte Carlo evaluation of Greeks "Vibrato" Monte Carlo evaluation of Greeks (Smoking Adjoints: part 3) Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute of Quantitative Finance MCQMC 2008,

More information

Black Scholes Equation Luc Ashwin and Calum Keeley

Black Scholes Equation Luc Ashwin and Calum Keeley Black Scholes Equation Luc Ashwin and Calum Keeley In the world of finance, traders try to take as little risk as possible, to have a safe, but positive return. As George Box famously said, All models

More information

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science

Multi-Asset Options. A Numerical Study VILHELM NIKLASSON FRIDA TIVEDAL. Master s thesis in Engineering Mathematics and Computational Science Multi-Asset Options A Numerical Study Master s thesis in Engineering Mathematics and Computational Science VILHELM NIKLASSON FRIDA TIVEDAL Department of Mathematical Sciences Chalmers University of Technology

More information

Math Option pricing using Quasi Monte Carlo simulation

Math Option pricing using Quasi Monte Carlo simulation . Math 623 - Option pricing using Quasi Monte Carlo simulation Pratik Mehta pbmehta@eden.rutgers.edu Masters of Science in Mathematical Finance Department of Mathematics, Rutgers University This paper

More information

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING

TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING TEST OF BOUNDED LOG-NORMAL PROCESS FOR OPTIONS PRICING Semih Yön 1, Cafer Erhan Bozdağ 2 1,2 Department of Industrial Engineering, Istanbul Technical University, Macka Besiktas, 34367 Turkey Abstract.

More information

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015

Monte Carlo Methods in Option Pricing. UiO-STK4510 Autumn 2015 Monte Carlo Methods in Option Pricing UiO-STK4510 Autumn 015 The Basics of Monte Carlo Method Goal: Estimate the expectation θ = E[g(X)], where g is a measurable function and X is a random variable such

More information

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation.

Module 10:Application of stochastic processes in areas like finance Lecture 36:Black-Scholes Model. Stochastic Differential Equation. Stochastic Differential Equation Consider. Moreover partition the interval into and define, where. Now by Rieman Integral we know that, where. Moreover. Using the fundamentals mentioned above we can easily

More information

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1

Computational Efficiency and Accuracy in the Valuation of Basket Options. Pengguo Wang 1 Computational Efficiency and Accuracy in the Valuation of Basket Options Pengguo Wang 1 Abstract The complexity involved in the pricing of American style basket options requires careful consideration of

More information

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives

SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives SYSM 6304: Risk and Decision Analysis Lecture 6: Pricing and Hedging Financial Derivatives M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information