MATH 210, PROBLEM SET 1 DUE IN LECTURE ON WEDNESDAY, JAN. 28

Size: px
Start display at page:

Download "MATH 210, PROBLEM SET 1 DUE IN LECTURE ON WEDNESDAY, JAN. 28"

Transcription

1 MATH 210, PROBLEM SET 1 DUE IN LECTURE ON WEDNESDAY, JAN Frankfurt s theory of lying and bullshit. Read Frankfurt s book On Bullshit. In particular, see the description of the distinction he makes between lying and bullshit on pages 50 through Discuss whether the actions in each of the situations below are closer to telling the truth, lying or to bullshitting. Justify your answers. a. A poker player deliberately plays his cards in a way that he thinks will convince the other players that he holds a particular extremely high hand, when in fact he has a worthless hand. b. During a congressional hearing about the proposed Keystone oil pipeline from Canada to the U.S., Karen Harbert of the Chamber of Commerce said: If you are in support of the environment, you are in support of the pipeline. c. Vladimir Putin recently said the following during a press conference: I have a very positive attitude to anyone who is protecting the environment, but it s inadmissible when people are using it as a means of promoting themselves, using it as a source of self-enrichment. I don t want to name any specific examples... but often, environmentalism is used to blackmail companies. 2. Find an example in the media or in your everyday life which fits Frankfurt s definition of bullshit. You may include excerpts of articles, pictures or other material. Justify why the example you propose fits Frankfurt s definition. 2. Games with saddlepoints Before trying to do these problems, read section 15.1 of the For all practical purposes text, which I will refer to as FAPP. Suppose that the payoff matrix to the player 1 of a zero sum game between two players is given by A = (a i,j ) 1 i n,1 j m, where the rows correspond to the n options of player 1 and the columns correspond to the m options of player 2. Here is an argument for why max 1 i n (min 1 j m a i,j ) min 1 j m (max 1 i n a i,j ). The left hand side is the highest outcome player 1 can achieve if player 2 plays their best pure strategy against any choice of pure strategy of player 1. The right hand side is the smallest outcome player 2 can hold player 1 to if player 2 plays a pure strategy and player 1 chooses their best pure strategy against each pure strategy by player 2. This implies the inequality. The game is defined to have a saddle point if max 1 i n (min 1 j m a i,j ) = min 1 j m (max 1 i n a i,j ). 1

2 2 DUE IN LECTURE ON WEDNESDAY, JAN. 28 In this case, there exist optimal pure strategies for each player, which may not be unique. A best pure strategy for player 1 is then called a maximin strategy; a best pure strategy for player 2 is then called a minimax strategy. The game represented by A = (a i,j ) 1 i n,1 j m has a dominant strategy for one player or the other if there is a choice of option by one player which is at least as good for them as any other option no matter what option the other player picks. Please briefly explain your reasoning for each of the problems below; the credit I can give depends on your reasoning. (1) In the following two-person zero-sum game, the payoffs represent gains to row player I and losses to column player II what is the maximin strategy for player 1? What is the minimax strategy for player 2? (2) Consider the following three two-person zero-sum games. The payoffs represent gains to the row player I and losses to column player II. ( ) ( 1 3 ) Which of these games have a saddlepoint? In which of the games does neither player have a dominant strategy? 3. Games with mixed strategies. To understand this topic, I suggest reading pages 21 to 33 of the book How math can save your life as well as section 15.2 of FAPP. I think pages 31 to 33 of How math can save your life are actually clearer than FAPP when it comes to describing how to choose mixed strategies. (1) The governor of a state must decide whether to invest $10 million this year in hurricane preparedness. He s not fond of science, and he s become tired of scientists telling him how hurricanes are becoming more frequent due to global warming. So he decides to ignore them and pick a strategy which maximizes his worse case political scenario. The (purely political) payoff to the governor depending on what he does are as follows: hurricane occurs no hurricane governor invests governor doesn t Does this game have a saddlepoint? What mixed strategy is the best option for the governor if he sticks to this purely political approach?

3 MATH 210, PROBLEM SET 1 3 (2) Describe a situation in the news, at Penn or in your own experience which can be viewed as a two-person two-option zero sum game. Formulate and explain the payoff matrix for one player in this game and determine what the optimal strategies of the players should be. Comment on the significance of your answer.

4 4 DUE IN LECTURE ON WEDNESDAY, JAN. 28 The theory of saddlepoints Suppose that two players, named I and II, play a zero-sum game in which player I has n options while player II has m options. If player I plays option i and player II plays option j, the payoff to player I is some number a i,j, while the payoff to player II is a i,j. (The game is zero sum because the payoff to each player is exactly the negative of the payoff to the other.) The Payoff matrix for player I is then A = (a i,j ) 1 i n,1 j m. Rows in this matrix are options for player I, while columns are options for player II. The maximin of this matrix is (3.1) maximin(a) = max 1 i n (min 1 j m a i,j ) This can be computed by first finding A row (i) = min 1 j m a i,j = a i,j(i) = a minimal entry in row i for some integer j(i) depending on i. There may be more than one j(i) which works. One then finds maximin(a) = max 1 i n A row (i) = a i1,j(i 1 ) for some i 1. Player II would like to minimize the payoff to player I of playing the game, since this maximizes the payoff to them. The significance of A row (i) is that if player II knows that player I is going to play option i, they should choose a stategy j = j(i) for themselves which minimizes a i,j as j runs from 1 to m. The payoff to player I of playing option i is then A row (i). If player I realizes that someone is going to leak their choice of strategy to player II, then they should choose i so that A row (i) is as large as possible. This leads to the payoff maximin(a) to player I (and payoff maximin(a) to player II). One should think of this number as the best player I can do if once they choose an option, this choice is told to player II, so that player II can best counter the choice made by player I. The minimax of the matrix A is (3.2) minimax(a) = min 1 j m (max 1 i n a i,j ) This can be computed by first finding A col (j) = max 1 i n a i,j = a i(j),j = a maximal entry in column j for some integer i(j). One then finds minimax(a) = min 1 j m A col (j) = a i(j2 ),j 2 for some j 2. This number represents the minimal payoff to player I (and thus the maximal payoff to player II) which player II can force if the option that player II picks is communicated to player I so that player I can best counter it. One says A has a saddlepoint if maximin(a) = minimax(a) In this case, suppose maximin(a) = a i1,j(i 1 ) and minimax(a) = a i(j2 ),j 2 as above. Then maximin(a) = a i1,j(i 1 ) a i1,j 2 a i(j2 ),j 2 = maximin(a)

5 MATH 210, PROBLEM SET 1 5 by the definitions of j(i 1 ) and i(j 2 ). But we are supposing A has a saddlepoint, so the far left and far right terms are equal, and we get maximin(a) = a i1,j(i 1 ) = a i1,j 2 = a i(j2 ),j 2 = maximin(a). We could have chosen j(i 1 ) to be any j which minimizes a i,j as j ranges over 1 j m, so this shows we might as well have chosen j(i 1 ) = j 2. Similarly we could choose i(j 2 ) = i 1. The upshot is that if A has a saddlepoint, then players I and II should pick options i 1 and j 2 respectively. Player I is then guaranteed a payoff of maximin(a) = minimax(a) and player II can ensure that the payoff is not larger than this. Neither player has an incentive to make another choice, since if they did, the other player could benefit at their expense. For instance, if player I picked some other option i 1, then A row (i 1 ) A row (i 1) = a i 1,j(i 1 ) and if this is a strict inequality, then player II could make things worse for player II by picking option j(i 1 ) rather than j 2. If A does not have a saddlepoint, there need not be one best option for each player. They may raise their expected returns by choosing randomly between their options giving each one a certain probability of being chosen. This is the subject of 15.2 of FAPP.

Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud

Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud Game Theory: Minimax, Maximin, and Iterated Removal Naima Hammoud March 14, 17 Last Lecture: expected value principle Colin A B Rose A - - B - Suppose that Rose knows Colin will play ½ A + ½ B Rose s Expectations

More information

15.053/8 February 28, person 0-sum (or constant sum) game theory

15.053/8 February 28, person 0-sum (or constant sum) game theory 15.053/8 February 28, 2013 2-person 0-sum (or constant sum) game theory 1 Quotes of the Day My work is a game, a very serious game. -- M. C. Escher (1898-1972) Conceal a flaw, and the world will imagine

More information

Their opponent will play intelligently and wishes to maximize their own payoff.

Their opponent will play intelligently and wishes to maximize their own payoff. Two Person Games (Strictly Determined Games) We have already considered how probability and expected value can be used as decision making tools for choosing a strategy. We include two examples below for

More information

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros

Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Math 167: Mathematical Game Theory Instructor: Alpár R. Mészáros Midterm #1, February 3, 2017 Name (use a pen): Student ID (use a pen): Signature (use a pen): Rules: Duration of the exam: 50 minutes. By

More information

Using the Maximin Principle

Using the Maximin Principle Using the Maximin Principle Under the maximin principle, it is easy to see that Rose should choose a, making her worst-case payoff 0. Colin s similar rationality as a player induces him to play (under

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May 1, 2014 COS 5: heoretical Machine Learning Lecturer: Rob Schapire Lecture #24 Scribe: Jordan Ash May, 204 Review of Game heory: Let M be a matrix with all elements in [0, ]. Mindy (called the row player) chooses

More information

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012

Game Theory. Lecture Notes By Y. Narahari. Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 2012 Game Theory Lecture Notes By Y. Narahari Department of Computer Science and Automation Indian Institute of Science Bangalore, India October 22 COOPERATIVE GAME THEORY Correlated Strategies and Correlated

More information

Comparative Study between Linear and Graphical Methods in Solving Optimization Problems

Comparative Study between Linear and Graphical Methods in Solving Optimization Problems Comparative Study between Linear and Graphical Methods in Solving Optimization Problems Mona M Abd El-Kareem Abstract The main target of this paper is to establish a comparative study between the performance

More information

Strategy Lines and Optimal Mixed Strategy for R

Strategy Lines and Optimal Mixed Strategy for R Strategy Lines and Optimal Mixed Strategy for R Best counterstrategy for C for given mixed strategy by R In the previous lecture we saw that if R plays a particular mixed strategy, [p, p, and shows no

More information

1. better to stick. 2. better to switch. 3. or does your second choice make no difference?

1. better to stick. 2. better to switch. 3. or does your second choice make no difference? The Monty Hall game Game show host Monty Hall asks you to choose one of three doors. Behind one of the doors is a new Porsche. Behind the other two doors there are goats. Monty knows what is behind each

More information

LINEAR PROGRAMMING. Homework 7

LINEAR PROGRAMMING. Homework 7 LINEAR PROGRAMMING Homework 7 Fall 2014 Csci 628 Megan Rose Bryant 1. Your friend is taking a Linear Programming course at another university and for homework she is asked to solve the following LP: Primal:

More information

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory

TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 152 ENGINEERING SYSTEMS Spring Lesson 16 Introduction to Game Theory TUFTS UNIVERSITY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING ES 52 ENGINEERING SYSTEMS Spring 20 Introduction: Lesson 6 Introduction to Game Theory We will look at the basic ideas of game theory.

More information

Outline for today. Stat155 Game Theory Lecture 13: General-Sum Games. General-sum games. General-sum games. Dominated pure strategies

Outline for today. Stat155 Game Theory Lecture 13: General-Sum Games. General-sum games. General-sum games. Dominated pure strategies Outline for today Stat155 Game Theory Lecture 13: General-Sum Games Peter Bartlett October 11, 2016 Two-player general-sum games Definitions: payoff matrices, dominant strategies, safety strategies, Nash

More information

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6

m 11 m 12 Non-Zero Sum Games Matrix Form of Zero-Sum Games R&N Section 17.6 Non-Zero Sum Games R&N Section 17.6 Matrix Form of Zero-Sum Games m 11 m 12 m 21 m 22 m ij = Player A s payoff if Player A follows pure strategy i and Player B follows pure strategy j 1 Results so far

More information

Maximizing Winnings on Final Jeopardy!

Maximizing Winnings on Final Jeopardy! Maximizing Winnings on Final Jeopardy! Jessica Abramson, Natalie Collina, and William Gasarch August 2017 1 Introduction Consider a final round of Jeopardy! with players Alice and Betty 1. We assume that

More information

Best counterstrategy for C

Best counterstrategy for C Best counterstrategy for C In the previous lecture we saw that if R plays a particular mixed strategy and shows no intention of changing it, the expected payoff for R (and hence C) varies as C varies her

More information

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts

6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts 6.254 : Game Theory with Engineering Applications Lecture 3: Strategic Form Games - Solution Concepts Asu Ozdaglar MIT February 9, 2010 1 Introduction Outline Review Examples of Pure Strategy Nash Equilibria

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 21: Game Theory Andrew McGregor University of Massachusetts Last Compiled: April 29, 2017 Outline 1 Game Theory 2 Example: Two-finger Morra Alice and Bob

More information

Maximizing Winnings on Final Jeopardy!

Maximizing Winnings on Final Jeopardy! Maximizing Winnings on Final Jeopardy! Jessica Abramson, Natalie Collina, and William Gasarch August 2017 1 Abstract Alice and Betty are going into the final round of Jeopardy. Alice knows how much money

More information

Introduction to Game Theory

Introduction to Game Theory Chapter G Notes 1 Epstein, 2013 Introduction to Game Theory G.1 Decision Making Game theory is a mathematical model that provides a atic way to deal with decisions under circumstances where the alternatives

More information

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory

ORF 307: Lecture 12. Linear Programming: Chapter 11: Game Theory ORF 307: Lecture 12 Linear Programming: Chapter 11: Game Theory Robert J. Vanderbei April 3, 2018 Slides last edited on April 3, 2018 http://www.princeton.edu/ rvdb Game Theory John Nash = A Beautiful

More information

MAT 4250: Lecture 1 Eric Chung

MAT 4250: Lecture 1 Eric Chung 1 MAT 4250: Lecture 1 Eric Chung 2Chapter 1: Impartial Combinatorial Games 3 Combinatorial games Combinatorial games are two-person games with perfect information and no chance moves, and with a win-or-lose

More information

MATH 121 GAME THEORY REVIEW

MATH 121 GAME THEORY REVIEW MATH 121 GAME THEORY REVIEW ERIN PEARSE Contents 1. Definitions 2 1.1. Non-cooperative Games 2 1.2. Cooperative 2-person Games 4 1.3. Cooperative n-person Games (in coalitional form) 6 2. Theorems and

More information

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10.

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10. e-pg Pathshala Subject : Computer Science Paper: Machine Learning Module: Decision Theory and Bayesian Decision Theory Module No: CS/ML/0 Quadrant I e-text Welcome to the e-pg Pathshala Lecture Series

More information

Game Theory Tutorial 3 Answers

Game Theory Tutorial 3 Answers Game Theory Tutorial 3 Answers Exercise 1 (Duality Theory) Find the dual problem of the following L.P. problem: max x 0 = 3x 1 + 2x 2 s.t. 5x 1 + 2x 2 10 4x 1 + 6x 2 24 x 1 + x 2 1 (1) x 1 + 3x 2 = 9 x

More information

Thursday, March 3

Thursday, March 3 5.53 Thursday, March 3 -person -sum (or constant sum) game theory -dimensional multi-dimensional Comments on first midterm: practice test will be on line coverage: every lecture prior to game theory quiz

More information

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h Learning Objectives After reading Chapter 15 and working the problems for Chapter 15 in the textbook and in this Workbook, you should be able to: Distinguish between decision making under uncertainty and

More information

Name. Answers Discussion Final Exam, Econ 171, March, 2012

Name. Answers Discussion Final Exam, Econ 171, March, 2012 Name Answers Discussion Final Exam, Econ 171, March, 2012 1) Consider the following strategic form game in which Player 1 chooses the row and Player 2 chooses the column. Both players know that this is

More information

CS 798: Homework Assignment 4 (Game Theory)

CS 798: Homework Assignment 4 (Game Theory) 0 5 CS 798: Homework Assignment 4 (Game Theory) 1.0 Preferences Assigned: October 28, 2009 Suppose that you equally like a banana and a lottery that gives you an apple 30% of the time and a carrot 70%

More information

Game Theory I. Author: Neil Bendle Marketing Metrics Reference: Chapter Neil Bendle and Management by the Numbers, Inc.

Game Theory I. Author: Neil Bendle Marketing Metrics Reference: Chapter Neil Bendle and Management by the Numbers, Inc. Game Theory I This module provides an introduction to game theory for managers and includes the following topics: matrix basics, zero and non-zero sum games, and dominant strategies. Author: Neil Bendle

More information

Phil 321: Week 2. Decisions under ignorance

Phil 321: Week 2. Decisions under ignorance Phil 321: Week 2 Decisions under ignorance Decisions under Ignorance 1) Decision under risk: The agent can assign probabilities (conditional or unconditional) to each state. 2) Decision under ignorance:

More information

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games

ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games University of Illinois Fall 2018 ECE 586GT: Problem Set 1: Problems and Solutions Analysis of static games Due: Tuesday, Sept. 11, at beginning of class Reading: Course notes, Sections 1.1-1.4 1. [A random

More information

Names: Date: Hour: You may want to cross off the amounts that show up in the cases you choose on the provided list to help with your probabilities.

Names: Date: Hour: You may want to cross off the amounts that show up in the cases you choose on the provided list to help with your probabilities. Names: Date: Deal or No Deal Hour: As you play the game, answer the questions according to the information we receive after you choose your cases. Write the probabilities as a fraction and as a percentage

More information

GAME THEORY. Game theory. The odds and evens game. Two person, zero sum game. Prototype example

GAME THEORY. Game theory. The odds and evens game. Two person, zero sum game. Prototype example Game theory GAME THEORY (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Mathematical theory that deals, in an formal, abstract way, with the general features of competitive situations

More information

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to

PAULI MURTO, ANDREY ZHUKOV. If any mistakes or typos are spotted, kindly communicate them to GAME THEORY PROBLEM SET 1 WINTER 2018 PAULI MURTO, ANDREY ZHUKOV Introduction If any mistakes or typos are spotted, kindly communicate them to andrey.zhukov@aalto.fi. Materials from Osborne and Rubinstein

More information

Game Theory - Lecture #8

Game Theory - Lecture #8 Game Theory - Lecture #8 Outline: Randomized actions vnm & Bernoulli payoff functions Mixed strategies & Nash equilibrium Hawk/Dove & Mixed strategies Random models Goal: Would like a formulation in which

More information

TTIC An Introduction to the Theory of Machine Learning. Learning and Game Theory. Avrim Blum 5/7/18, 5/9/18

TTIC An Introduction to the Theory of Machine Learning. Learning and Game Theory. Avrim Blum 5/7/18, 5/9/18 TTIC 31250 An Introduction to the Theory of Machine Learning Learning and Game Theory Avrim Blum 5/7/18, 5/9/18 Zero-sum games, Minimax Optimality & Minimax Thm; Connection to Boosting & Regret Minimization

More information

Regret Minimization and Security Strategies

Regret Minimization and Security Strategies Chapter 5 Regret Minimization and Security Strategies Until now we implicitly adopted a view that a Nash equilibrium is a desirable outcome of a strategic game. In this chapter we consider two alternative

More information

Decision Making. DKSharma

Decision Making. DKSharma Decision Making DKSharma Decision making Learning Objectives: To make the students understand the concepts of Decision making Decision making environment; Decision making under certainty; Decision making

More information

CS711 Game Theory and Mechanism Design

CS711 Game Theory and Mechanism Design CS711 Game Theory and Mechanism Design Problem Set 1 August 13, 2018 Que 1. [Easy] William and Henry are participants in a televised game show, seated in separate booths with no possibility of communicating

More information

Introduction to Game Theory

Introduction to Game Theory Chapter G Notes 1 Epstein, 2013 Introduction to Game Theory G.1 Decision Making Game theory is a mathematical model that provides a systematic way to deal with decisions under circumstances where the alternatives

More information

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002

Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 Economics 109 Practice Problems 1, Vincent Crawford, Spring 2002 P1. Consider the following game. There are two piles of matches and two players. The game starts with Player 1 and thereafter the players

More information

(a) Describe the game in plain english and find its equivalent strategic form.

(a) Describe the game in plain english and find its equivalent strategic form. Risk and Decision Making (Part II - Game Theory) Mock Exam MIT/Portugal pages Professor João Soares 2007/08 1 Consider the game defined by the Kuhn tree of Figure 1 (a) Describe the game in plain english

More information

Yao s Minimax Principle

Yao s Minimax Principle Complexity of algorithms The complexity of an algorithm is usually measured with respect to the size of the input, where size may for example refer to the length of a binary word describing the input,

More information

MS&E 246: Lecture 5 Efficiency and fairness. Ramesh Johari

MS&E 246: Lecture 5 Efficiency and fairness. Ramesh Johari MS&E 246: Lecture 5 Efficiency and fairness Ramesh Johari A digression In this lecture: We will use some of the insights of static game analysis to understand efficiency and fairness. Basic setup N players

More information

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals.

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals. Chapter 3 Oligopoly Oligopoly is an industry where there are relatively few sellers. The product may be standardized (steel) or differentiated (automobiles). The firms have a high degree of interdependence.

More information

Game Theory: Additional Exercises

Game Theory: Additional Exercises Game Theory: Additional Exercises Problem 1. Consider the following scenario. Players 1 and 2 compete in an auction for a valuable object, for example a painting. Each player writes a bid in a sealed envelope,

More information

Repeated, Stochastic and Bayesian Games

Repeated, Stochastic and Bayesian Games Decision Making in Robots and Autonomous Agents Repeated, Stochastic and Bayesian Games Subramanian Ramamoorthy School of Informatics 26 February, 2013 Repeated Game 26/02/2013 2 Repeated Game - Strategies

More information

Iterated Dominance and Nash Equilibrium

Iterated Dominance and Nash Equilibrium Chapter 11 Iterated Dominance and Nash Equilibrium In the previous chapter we examined simultaneous move games in which each player had a dominant strategy; the Prisoner s Dilemma game was one example.

More information

S 2,2-1, x c C x r, 1 0,0

S 2,2-1, x c C x r, 1 0,0 Problem Set 5 1. There are two players facing each other in the following random prisoners dilemma: S C S, -1, x c C x r, 1 0,0 With probability p, x c = y, and with probability 1 p, x c = 0. With probability

More information

GAME THEORY. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

GAME THEORY. (Hillier & Lieberman Introduction to Operations Research, 8 th edition) GAME THEORY (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Game theory Mathematical theory that deals, in an formal, abstract way, with the general features of competitive situations

More information

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to:

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to: CHAPTER 3 Decision Analysis LEARNING OBJECTIVES After completing this chapter, students will be able to: 1. List the steps of the decision-making process. 2. Describe the types of decision-making environments.

More information

Answer Key: Problem Set 4

Answer Key: Problem Set 4 Answer Key: Problem Set 4 Econ 409 018 Fall A reminder: An equilibrium is characterized by a set of strategies. As emphasized in the class, a strategy is a complete contingency plan (for every hypothetical

More information

SI 563 Homework 3 Oct 5, Determine the set of rationalizable strategies for each of the following games. a) X Y X Y Z

SI 563 Homework 3 Oct 5, Determine the set of rationalizable strategies for each of the following games. a) X Y X Y Z SI 563 Homework 3 Oct 5, 06 Chapter 7 Exercise : ( points) Determine the set of rationalizable strategies for each of the following games. a) U (0,4) (4,0) M (3,3) (3,3) D (4,0) (0,4) X Y U (0,4) (4,0)

More information

Problem 3 Solutions. l 3 r, 1

Problem 3 Solutions. l 3 r, 1 . Economic Applications of Game Theory Fall 00 TA: Youngjin Hwang Problem 3 Solutions. (a) There are three subgames: [A] the subgame starting from Player s decision node after Player s choice of P; [B]

More information

Math 135: Answers to Practice Problems

Math 135: Answers to Practice Problems Math 35: Answers to Practice Problems Answers to problems from the textbook: Many of the problems from the textbook have answers in the back of the book. Here are the answers to the problems that don t

More information

Decision Making. D.K.Sharma

Decision Making. D.K.Sharma Decision Making D.K.Sharma 1 Decision making Learning Objectives: To make the students understand the concepts of Decision making Decision making environment; Decision making under certainty; Decision

More information

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3

6.896 Topics in Algorithmic Game Theory February 10, Lecture 3 6.896 Topics in Algorithmic Game Theory February 0, 200 Lecture 3 Lecturer: Constantinos Daskalakis Scribe: Pablo Azar, Anthony Kim In the previous lecture we saw that there always exists a Nash equilibrium

More information

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance

Expectations & Randomization Normal Form Games Dominance Iterated Dominance. Normal Form Games & Dominance Normal Form Games & Dominance Let s play the quarters game again We each have a quarter. Let s put them down on the desk at the same time. If they show the same side (HH or TT), you take my quarter. If

More information

PAULI MURTO, ANDREY ZHUKOV

PAULI MURTO, ANDREY ZHUKOV GAME THEORY SOLUTION SET 1 WINTER 018 PAULI MURTO, ANDREY ZHUKOV Introduction For suggested solution to problem 4, last year s suggested solutions by Tsz-Ning Wong were used who I think used suggested

More information

Homework #2 Psychology 101 Spr 03 Prof Colin Camerer

Homework #2 Psychology 101 Spr 03 Prof Colin Camerer Homework #2 Psychology 101 Spr 03 Prof Colin Camerer This is available Monday 28 April at 130 (in class or from Karen in Baxter 332, or on web) and due Wednesday 7 May at 130 (in class or to Karen). Collaboration

More information

Econ 172A, W2002: Final Examination, Solutions

Econ 172A, W2002: Final Examination, Solutions Econ 172A, W2002: Final Examination, Solutions Comments. Naturally, the answers to the first question were perfect. I was impressed. On the second question, people did well on the first part, but had trouble

More information

COS 445 Final. Due online Monday, May 21st at 11:59 pm. Please upload each problem as a separate file via MTA.

COS 445 Final. Due online Monday, May 21st at 11:59 pm. Please upload each problem as a separate file via MTA. COS 445 Final Due online Monday, May 21st at 11:59 pm All problems on this final are no collaboration problems. You may not discuss any aspect of any problems with anyone except for the course staff. You

More information

ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100

ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100 Name:... ECO 5341 (Section 2) Spring 2016 Midterm March 24th 2016 Total Points: 100 For full credit, please be formal, precise, concise and tidy. If your answer is illegible and not well organized, if

More information

Chapter 2 Strategic Dominance

Chapter 2 Strategic Dominance Chapter 2 Strategic Dominance 2.1 Prisoner s Dilemma Let us start with perhaps the most famous example in Game Theory, the Prisoner s Dilemma. 1 This is a two-player normal-form (simultaneous move) game.

More information

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens.

Definition 4.1. In a stochastic process T is called a stopping time if you can tell when it happens. 102 OPTIMAL STOPPING TIME 4. Optimal Stopping Time 4.1. Definitions. On the first day I explained the basic problem using one example in the book. On the second day I explained how the solution to the

More information

Game theory and applications: Lecture 1

Game theory and applications: Lecture 1 Game theory and applications: Lecture 1 Adam Szeidl September 20, 2018 Outline for today 1 Some applications of game theory 2 Games in strategic form 3 Dominance 4 Nash equilibrium 1 / 8 1. Some applications

More information

1 Shapley-Shubik Model

1 Shapley-Shubik Model 1 Shapley-Shubik Model There is a set of buyers B and a set of sellers S each selling one unit of a good (could be divisible or not). Let v ij 0 be the monetary value that buyer j B assigns to seller i

More information

Introduction to Multi-Agent Programming

Introduction to Multi-Agent Programming Introduction to Multi-Agent Programming 10. Game Theory Strategic Reasoning and Acting Alexander Kleiner and Bernhard Nebel Strategic Game A strategic game G consists of a finite set N (the set of players)

More information

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers

So we turn now to many-to-one matching with money, which is generally seen as a model of firms hiring workers Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 20 November 13 2008 So far, we ve considered matching markets in settings where there is no money you can t necessarily pay someone to marry

More information

MBF1413 Quantitative Methods

MBF1413 Quantitative Methods MBF1413 Quantitative Methods Prepared by Dr Khairul Anuar 4: Decision Analysis Part 1 www.notes638.wordpress.com 1. Problem Formulation a. Influence Diagrams b. Payoffs c. Decision Trees Content 2. Decision

More information

Section Strictly Determined Games, Dominated Rows, Saddle Points

Section Strictly Determined Games, Dominated Rows, Saddle Points Finite Math B Chapter 11 Practice Questions Game Theory Section 11.1 - Strictly Determined Games, Dominated Rows, Saddle Points MULTIPLE CHOICE. Choose the one alternative that best completes the statement

More information

Outline for today. Stat155 Game Theory Lecture 19: Price of anarchy. Cooperative games. Price of anarchy. Price of anarchy

Outline for today. Stat155 Game Theory Lecture 19: Price of anarchy. Cooperative games. Price of anarchy. Price of anarchy Outline for today Stat155 Game Theory Lecture 19:.. Peter Bartlett Recall: Linear and affine latencies Classes of latencies Pigou networks Transferable versus nontransferable utility November 1, 2016 1

More information

Game Theory Notes: Examples of Games with Dominant Strategy Equilibrium or Nash Equilibrium

Game Theory Notes: Examples of Games with Dominant Strategy Equilibrium or Nash Equilibrium Game Theory Notes: Examples of Games with Dominant Strategy Equilibrium or Nash Equilibrium Below are two different games. The first game has a dominant strategy equilibrium. The second game has two Nash

More information

The Course So Far. Atomic agent: uninformed, informed, local Specific KR languages

The Course So Far. Atomic agent: uninformed, informed, local Specific KR languages The Course So Far Traditional AI: Deterministic single agent domains Atomic agent: uninformed, informed, local Specific KR languages Constraint Satisfaction Logic and Satisfiability STRIPS for Classical

More information

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015

CUR 412: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 2015 CUR 41: Game Theory and its Applications Final Exam Ronaldo Carpio Jan. 13, 015 Instructions: Please write your name in English. This exam is closed-book. Total time: 10 minutes. There are 4 questions,

More information

BRIEF INTRODUCTION TO GAME THEORY

BRIEF INTRODUCTION TO GAME THEORY BRIEF INTRODUCTION TO GAME THEORY Game Theory Mathematical theory that deals with the general features of competitive situations. Examples: parlor games, military battles, political campaigns, advertising

More information

CSE 316A: Homework 5

CSE 316A: Homework 5 CSE 316A: Homework 5 Due on December 2, 2015 Total: 160 points Notes There are 8 problems on 5 pages below, worth 20 points each (amounting to a total of 160. However, this homework will be graded out

More information

Topic One: Zero-sum games and saddle point equilibriums

Topic One: Zero-sum games and saddle point equilibriums MATH4321 Game Theory Topic One: Zero-sum games and saddle point equilibriums 1.1 Definitions and examples Essential elements of a game Game matrix and game tree representation of a game Expected payoff

More information

Chapter 18 Student Lecture Notes 18-1

Chapter 18 Student Lecture Notes 18-1 Chapter 18 Student Lecture Notes 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis 5 Prentice-Hall, Inc. Chap 18-1 Chapter Goals After completing

More information

Applying Risk Theory to Game Theory Tristan Barnett. Abstract

Applying Risk Theory to Game Theory Tristan Barnett. Abstract Applying Risk Theory to Game Theory Tristan Barnett Abstract The Minimax Theorem is the most recognized theorem for determining strategies in a two person zerosum game. Other common strategies exist such

More information

HW Consider the following game:

HW Consider the following game: HW 1 1. Consider the following game: 2. HW 2 Suppose a parent and child play the following game, first analyzed by Becker (1974). First child takes the action, A 0, that produces income for the child,

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

IV. Cooperation & Competition

IV. Cooperation & Competition IV. Cooperation & Competition Game Theory and the Iterated Prisoner s Dilemma 10/15/03 1 The Rudiments of Game Theory 10/15/03 2 Leibniz on Game Theory Games combining chance and skill give the best representation

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2017 The time limit for this exam is four hours. The exam has four sections. Each section includes two questions.

More information

Microeconomic Theory II Preliminary Examination Solutions Exam date: June 5, 2017

Microeconomic Theory II Preliminary Examination Solutions Exam date: June 5, 2017 Microeconomic Theory II Preliminary Examination Solutions Exam date: June 5, 07. (40 points) Consider a Cournot duopoly. The market price is given by q q, where q and q are the quantities of output produced

More information

TUTORIAL KIT OMEGA SEMESTER PROGRAMME: BANKING AND FINANCE

TUTORIAL KIT OMEGA SEMESTER PROGRAMME: BANKING AND FINANCE TUTORIAL KIT OMEGA SEMESTER PROGRAMME: BANKING AND FINANCE COURSE: BFN 425 QUANTITATIVE TECHNIQUE FOR FINANCIAL DECISIONS i DISCLAIMER The contents of this document are intended for practice and leaning

More information

MA300.2 Game Theory 2005, LSE

MA300.2 Game Theory 2005, LSE MA300.2 Game Theory 2005, LSE Answers to Problem Set 2 [1] (a) This is standard (we have even done it in class). The one-shot Cournot outputs can be computed to be A/3, while the payoff to each firm can

More information

The Course So Far. Decision Making in Deterministic Domains. Decision Making in Uncertain Domains. Next: Decision Making in Uncertain Domains

The Course So Far. Decision Making in Deterministic Domains. Decision Making in Uncertain Domains. Next: Decision Making in Uncertain Domains The Course So Far Decision Making in Deterministic Domains search planning Decision Making in Uncertain Domains Uncertainty: adversarial Minimax Next: Decision Making in Uncertain Domains Uncertainty:

More information

Name. FINAL EXAM, Econ 171, March, 2015

Name. FINAL EXAM, Econ 171, March, 2015 Name FINAL EXAM, Econ 171, March, 2015 There are 9 questions. Answer any 8 of them. Good luck! Remember, you only need to answer 8 questions Problem 1. (True or False) If a player has a dominant strategy

More information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information

Algorithmic Game Theory and Applications. Lecture 11: Games of Perfect Information Algorithmic Game Theory and Applications Lecture 11: Games of Perfect Information Kousha Etessami finite games of perfect information Recall, a perfect information (PI) game has only 1 node per information

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming Dynamic programming is a technique that can be used to solve many optimization problems. In most applications, dynamic programming obtains solutions by working backward

More information

Stochastic Games and Bayesian Games

Stochastic Games and Bayesian Games Stochastic Games and Bayesian Games CPSC 532l Lecture 10 Stochastic Games and Bayesian Games CPSC 532l Lecture 10, Slide 1 Lecture Overview 1 Recap 2 Stochastic Games 3 Bayesian Games 4 Analyzing Bayesian

More information

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017

ECON 459 Game Theory. Lecture Notes Auctions. Luca Anderlini Spring 2017 ECON 459 Game Theory Lecture Notes Auctions Luca Anderlini Spring 2017 These notes have been used and commented on before. If you can still spot any errors or have any suggestions for improvement, please

More information

Problem Set 2 Answers

Problem Set 2 Answers Problem Set 2 Answers BPH8- February, 27. Note that the unique Nash Equilibrium of the simultaneous Bertrand duopoly model with a continuous price space has each rm playing a wealy dominated strategy.

More information

MATH 4321 Game Theory Solution to Homework Two

MATH 4321 Game Theory Solution to Homework Two MATH 321 Game Theory Solution to Homework Two Course Instructor: Prof. Y.K. Kwok 1. (a) Suppose that an iterated dominance equilibrium s is not a Nash equilibrium, then there exists s i of some player

More information

Modelling Anti-Terrorist Surveillance Systems from a Queueing Perspective

Modelling Anti-Terrorist Surveillance Systems from a Queueing Perspective Systems from a Queueing Perspective September 7, 2012 Problem A surveillance resource must observe several areas, searching for potential adversaries. Problem A surveillance resource must observe several

More information

ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium

ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium ECONS 424 STRATEGY AND GAME THEORY HANDOUT ON PERFECT BAYESIAN EQUILIBRIUM- III Semi-Separating equilibrium Let us consider the following sequential game with incomplete information. Two players are playing

More information

6.207/14.15: Networks Lecture 9: Introduction to Game Theory 1

6.207/14.15: Networks Lecture 9: Introduction to Game Theory 1 6.207/14.15: Networks Lecture 9: Introduction to Game Theory 1 Daron Acemoglu and Asu Ozdaglar MIT October 13, 2009 1 Introduction Outline Decisions, Utility Maximization Games and Strategies Best Responses

More information

Microeconomic Theory II Preliminary Examination Solutions

Microeconomic Theory II Preliminary Examination Solutions Microeconomic Theory II Preliminary Examination Solutions 1. (45 points) Consider the following normal form game played by Bruce and Sheila: L Sheila R T 1, 0 3, 3 Bruce M 1, x 0, 0 B 0, 0 4, 1 (a) Suppose

More information