Round number effects in WTI Crude Oil Futures Market

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Round number effects in WTI Crude Oil Futures Market"

Transcription

1 Round number effects n WTI Crude Ol Futures Market Vctor (Ro) Cho Abstract Round number effects predct excess buyng ust below a round number ($X.99) and excess sellng ust above a round number ($X.01). Usng 148 mllon trade observatons for West Texas (WTI) crude ol futures market for the perod from January 01, 1996 to October 31, 2015, we fnd excess buyng ust below a round number and excess sellng ust above a round number n both pre- and post-electronc perods, confrmng the exstence of round number effects n WTI crude ol futures market. Further, ths paper provdes evdence that hedgers, who are less nformed traders, nfluence round number effects. Earler research nto round number effects focuses on US stock markets only and does not address what type of traders nfluences round number effects. We also examne 24-hour trade return based on round number effects. Prevous lterature documents evdence that round number effects s a maor determnant of 24-hour postve trade return n US stock markets. By contrast, we fnd round number effects s not a determnant of 24-hour postve trade return n WTI crude ol futures market and the average 24-hour trade return based on round number effects s negatve percent. Addtonally, we document evdence that the mpact of the net poston held by hedgers s greater than that of speculators on market lqudty and volatlty n WTI crude ol futures market. We fnd negatve relaton between excess sellng by hedgers and market lqudty and postve relaton between excess buyng by hedgers and market lqudty. We also fnd postve relaton between excess sellng by hedgers and market volatlty but we fnd no evdence that tradng actvty of speculators affect market volatlty. 1

2 Contents Round number effects n WTI Crude Ol Futures Market... 1 Abstract Introducton Background, Pror Lterature and Hypotheses Development Hypothess 1: Round number effects Left-dgt effects Threshold trgger effect Cluster undercuttng effect Hypothess 2: Impacts of Tradng actvty of Speculators and hedgers on round number Hypothess 3: the determnant of 24-hour trade return Impacts of dfferent traders poston on prce volatlty Data Roll over Pre and Post-electronc perod Buy-sell mbalances Hedger and speculator postons Lqudty and volatlty Methodology Emprcal results Summary statstcs durng pre-electronc Perod Hypothess 1: exstence of round number effects durng pre-electronc perod Summary statstcs durng post-electronc perod Hypothess 1: exstence of round number effects durng post-electronc perod Condtonal Buy-sell Imbalance Tests Hypothess 2: mpacts of hedgng and speculatng on round number effects Hypothess 3: the determnants of 24-hour trade return Robustness Lqudty and tradng actvty Volatlty and tradng actvty Concluson Reference

3 1. Introducton A recent research by Bhattacharya, Holden and Jacobsen (2012) provde evdence that stock market traders use a round number as cogntve reference pont for value. Bhattacharya, Holden and Jacobsen (2012) fnd excess buyng ust below a round number ($X.99) and excess sellng ust above a round number ($X.01) by lqudty demanders n U.S common stock markets and they term t round number effects. Ther fndng s most consstent wth psychologcal prcng effect around a round number as dscussed n research n cogntve psychology and marketng (Rosch, 1975; Thomas and Morwtz, 2005). Bhattacharya, Holden and Jacobsen (2012) dscuss three dfferent knds of round number effects (1) left-dgt effect, (2) threshold trgger effect, and (3) the cluster undercuttng effect to explan the excess buyng ust below a round number ($X.99) and excess sellng ust above a round number ($X.01). Bhattacharya, Holden and Jacobsen (2012) further document that round number effects s a maor determnant of 24-hour postve trade return. A large lterature documents the assocaton between tradng actvty and prce clusterng at a round number (Nederhoffer, 1965; Nederhoffer, 1966; Harrs 1991; Grossman, Mller, Cone, Fschel and Ross, 1997; Ikenberry and Weston 2003; Chung, Van Ness and Van Ness, 2004; Davs, Van Ness and Van Ness, 2014). Most studes document nvestors have a preference for a round number because of ts hgh accessblty as dscussed n cogntve psychology and marketng research (Rosch, 1975;Thomas and Morwtz, 2005). The key dfference between the analyss of prce clusterng and round number effects s that the drecton of trades only matters when analysng round number effects. Whle, n most exstng studes, tradng actvty s measured by volume, we measure tradng actvty by order mbalance. Order mbalance, defned as the proporton of net buyer-ntated 1, s a measure of tradng actvty that s suggested as more nformatve than volume (Chorda, Roll and Subrahmanyam, 2002). Motvated by fndngs of Bhattacharya, Holden and Jacobsen, we extend ths lne of the lterature by explorng the exstence of round number effects n West Texas (WTI) crude 1 The net buyer-ntated s defned as the dfference between buyer-ntated and seller-ntated trades 3

4 ol futures market. The commodty futures markets are dfferent from stock markets n several ways. One of the maor dfferences s that whle stocks are nvestment assets, commodty futures assets are consumpton assets. Therefore, commodty futures markets are for hedgng and speculatng. U.S commodty futures tradng commsson (CFTC) publsh weekly commtment of traders (COT) report that contans long and short postons held by hedgers and speculators. Ths specal feature helps us to separate speculators from hedgers. Ths enables us to examne whether tradng actvty of hedgers or speculators nfluences round number effects. Snce WTI crude ol futures s one of the largest commodty futures markets, the features of WTI crude ol futures should represent the general features of commodty futures markets. In ths paper, usng 152 mllon trade observatons over the perod from January 01, 1996 to October 31, 2015, we explore the exstence of round number effects n WTI crude ol futures market. We dvde the sample perod nto two sub-sample perods: pre and post-electronc perod to examne whether there s any change n round number effects. Followng Bhattacharya, Holden and Jacobsen (2012), we also compute buysell rato n three dfferent ways: the proporton of the net buyer-ntated trades, the proporton of the net volume of buyer-ntated futures contact and the proporton of the net buyer-ntated dollar volume. For all three regressons, we fnd excess buyng ust below a round number and excess sellng ust above a round number durng both pre and post-electronc perods. Thus, we confrm the exstence of round number effects exst n WTI Crude ol futures market. We also examne whch of three round number effects s more prevalent than the other two. Usng nckel as a benchmark, we conducted four condtonal buy-sell mbalance: ask falls below a round number, ask falls to a round number, bd rses to a round number, bd rses above a round number and ther correspondng ask falls below a nckel, ask falls to a nckel, bd rses to a nckel, bd rses above a nckel. Inconsstent wth Bhattacharya, Holden and Jacobsen (2012) who document that cluster undercuttng effect s the domnant round number effects n US stock markets, we fnd that threshold trgger effect s more prevalent than the other two n WTI crude ol futures market. Havng explored the exstence of round number effects WTI crude ol futures market, we examne whether 4

5 round number effects s a maor determnant of 24-hour trade return as documented n Bhattacharya, Holden and Jacobsen (2012). However, we further fnd conflctng fndng to that of Bhattacharya, Holden and Jacobsen (2012). We fnd no evdence that round number effects s a determnant of 24-hour postve trade return and the average 24- hour trade return based on round number effects s negatve percent n WTI crude ol futures market. As a robustness check, we nclude two market varables market lqudty and volatlty measured by the relatve bd-ask spread and standard devaton of prce return respectvely. Controllng for market lqudty and volatlty separately, we fnd that round number reman persstent. We make several new contrbutons to the lterature on round number effects. Frst, we are the frst study to provde evdence that round number effects exst n commodty futures markets. Second, we explore the trader type that nfluences round number effects. Prevously, Johnson and Shanthkumar (2007) examne whether unnformed traders nfluence stock-prce clusterng n US stock markets but they fnd no evdence. Usng COT, we are able to separate speculators from hedgers and fnd that hedgers, who are less nformed, nfluences round number effects. To our knowledge, we are the frst study to provde evdence that unnformed traders nfluences round number effects. Addtonally, we examne the nteracton between tradng actvty of hedgers and speculators and market lqudty. We fnd that net poston of hedgers has an asymmetrc effect on market lqudty. We provde evdence that there s negatve relaton between excess sellng and market lqudty (.e. wder bd-ask spread) and postve relaton between excess buyng and market lqudty (.e. narrower bd-ask spread). We also examne the nteracton between tradng actvty of hedgers and speculators and market volatlty. We fnd that net poston of hedgers has an asymmetrc effect on market volatlty. We provde evdence that excess sellng by hedgers affect market volatlty. However, we fnd no evdence that tradng actvty of speculators affect market volatlty. The rest of the paper s organsed as follows. Secton 2 dscusses the lterature revew and hypothess development. Secton 3 explans the data source and the selecton of 5

6 sample data. Secton 4 presents the methodology. Secton 5 presents emprcal evdence on left-dgt effect n commodty futures market. Secton 6 concludes. 6

7 2. Background, Pror Lterature and Hypotheses Development 2.1. Hypothess 1: Round number effects Our frst hypothess s that there s excess buyng ust below a round number ($X.99) and excess sellng ust above a round number ($X.01). Round number effects predct excess buyng ust below a round number and excess sellng ust above a round number because stock traders use a round number as cogntve reference pont for value. Thus, the theory tells us stock traders are motvated to buy ust below a round number and motvated to sell ust above a round number. Bhattacharya, Holden and Jacobsen (2012) are the frst to test whether there s excess buyng ust below a round number and excess sellng ust above a round number n US stock markets, whch they term round number effects. Usng 100 mllon stock transactons, Bhattacharya, Holden and Jacobsen (2012) fnd excess buyng ust below a round number and excess sellng ust above a round number by lqudty demanders n US stock markets, provdng evdence of the exstence of round number effects n US stock markets. As dscussed above, excess buyng ust below a round number and excess sellng ust above a round number s an mplcaton of round number effects. Ths gves us our frst hypothess. Hypothess 1 (H1). Buy trades should outnumber sell trades ust below a round number (e.g. $X.99) and sell trades should outnumber buy trades ust above a round number (e.g. $X.01) Bhattacharya, Holden and Jacobsen dscuss three dfferent knds of round number effects hypotheses for buy-sell mbalance pattern below and above a round number (1) the left-dgt effect, (2) threshold trgger effect and (3) the cluster undercuttng effect. 7

8 2.1.1 Left-dgt effects Frst, one vew that holds excess buyng ust below a round number and excess sellng ust above a round number s left-dgt effect. Left-dgt effect s the observaton that leftmost prce dsproportonately affects our percepton of prce. Ths percepton s more lkely to occur when ntroducng a nne endng n the prce. However, t s the change n the leftmost dgt, rather than one cent drop, that affects the magntude of percepton. For example, the psychologcal dfference between $3.00 and $2.99 s greater than the dfference between $2.70 and $2.69 because consumers pay a lot more attenton to the leftmost dgt than rght-hand dgts. To consder evdence, we consder the marketng lterature. Usng 1,415 advertsed retal prces from newspapers, Schndler and Krby (1997) document evdence that 9-endng prce s the most common practce by retalers. Stvng and Wner (1997) document evdence that consumers do not always process all of the numercal nformaton contaned n the prce. Usng the data for two frequently purchased products, tuna and yogurt, Stvng and Wner (1997) fnd that consumers process prces from left-to-rght, begnnng wth leftmost dgts and frequently gnore rght-hand dgts. Schndler and Wman (1989) document evdence that 9-endng prces are less lkely to be recalled accurately and the prce wll be underestmated when t s recalled. Thomas and Morwtz (2005) fnd that consumers perceve 9-endng prce substantally lower than a 0-endng prce only when the leftmost dgt changes. Drawng on the over-representaton of 9-endng n advertsed retal prces by retalers, Brenner and Brenner (1982) conclude we have only a lmted amount of memory and a lmted capacty for storng drectly accessble nformaton. In other words, people have processng lmtaton and there s a lmt on how much nformaton a human beng can deal wth at once or wthn a lmted perod. Hnrchs, Yurko and Hu (1981) document that left-to-rght readng causes people to make decson smply on the bass of the value of the leftmost dgt the most accessble number and storng only the leftmost dgt of a number s a very smple operaton. In lne wth studes on nne-endng prce, a number of retal prcng studes provde evdence that the use of 9-endng prce ncrease demand n retal sales (Anderson, and Smester, 2003; Schndler and Kbaran,1996). 8

9 Threshold trgger effect The second round number effect s threshold trgger effect. The threshold trgger effect s defned as when a securty prce reaches or cross a round number, a wave of buyng or sellng s trggered. The key dea s nvestors have a preference for round numbers, where the herarchy of roundness from the most round to the least round s whole dollars, half-dollars, quarters, dmes, nckels, and pennes. For example, f the securty prce falls to (or crosses below) a round number, t wll trgger buy trades whereas f the prce rses to (or crosses above) a round number, t wll trgger sell trades. Research n cogntve psychology documents evdence that people employ heurstc to reduce udgements to smpler one when faced wth the dffcult task of udgng the probablty of event (Tversky and Kahneman, 1973). One heurstc that Rosch (1975) documents s that people use cogntve reference ponts as comparson standards to form udgment aganst other stmul (Rosch 1975). In the context of numbers, Rosch (1975) documents that round numbers are cogntve reference ponts because round numbers have hgh cogntve accessblty as they are easer to recall and work wth than non-round numbers. Schndler and Krby (1997) show that round numbers have hgh cogntve accessblty and the hgh cogntve accessblty of round numbers account for the overrepresentaton of 0- and 5-endng prces ( the mdpont of 10) n retal markets. There s a large fnance lterature on prce clusterng at round numbers n fnancal markets. Prce clusterng s a phenomenon where transactons cluster at round numbers. Consstent wth the threshold trgger effects, a number of studes provde evdence of the prce clusterng at round numbers n US stock markets. Usng 1,854 NYSE and AMEX (pre-decmalzaton) transacton dataset durng the week of September 28, 1987, Harrs (1991) document evdence that whole-dollar prces are more common than half-dollar prces, and half-dollar prces are more common than odd quarters, confrmng that prce clusterng s pervasve n US stock markets. Harrs (1991) fnds that clusterng ncreases wth volatlty. Usng post- decmalzaton trade prce and quote dataset of NYSE and NASDAQ for May 2001, Chung, Van Ness and Van Ness (2004) provde evdence that prce clusterng perssts even after the move to decmalzaton, wth prce clusterng on zero-endng prces ($X.X0). Prce clusterng at round numbers s also reported n nternatonal equty markets (Atken, Brown, 9

10 Buckland, Izan and Walter, 1996; Grossman, Mller, Cone, Fschel and Ross, 1997; Ca, Ca and Keasey 2007; Guo, 2013). Atken, Brown, Buckland, Izan and Walter (1996) fnd prce clusterng on Australan Stock Exchange and also fnd that prce clusterng ncreases volatlty. Ca, Ca and Keasey (2007) fnd prce clusterng on both stock markets (the SHSE and SZSE) n Chna. Other fnancal markets such as IPO aucton (Kandel, Sarg,and Wohl, 2001), currency (Goodhart and Curco, 1990; Osler (2003)), gold (Aggarwal and Lucey, 2005) also report prce clusterng at round numbers. A recent research by Davs, Van Ness and Van Ness (2014) fnds prce clusterng even n a sample that contans hgh-frequency tradng frm s transactons. Usng the database contans the tradng actvty of 26 hgh-frequency tradng frms n 120 stocks on NASDAQ for the year 2009, Davs, Van Ness and Van Ness (2014) document evdence that prce clusterng ncreases wth volatlty when a non-hgh frequency tradng frms provdes lqudty. However, when a hgh-frequency tradng frm provdes lqudty, the varable s not sgnfcant Cluster undercuttng effect The last round number effect s the cluster undercuttng effect. Undercuttng occurs when a new lmt sell (buy) s submtted at a penny lower (hgher) than the exstng ask (bd) at a round number. For example, a market buy hts the new ask prce at $2.99 and thus, buy trades are frequently recorded below round numbers. Conversely, a market sell hts the new bd prce at $3.01 and thus, sell trades are frequently recorded above round numbers. The cluster undercuttng effect predcts excess buyng below round numbers and excess sellng above round numbers. Bhattacharya, Holden and Jacobsen document that the cluster undercuttng s the most pervasve round number effects. 10

11 2.2. Hypothess 2: Impacts of Tradng actvty of Speculators and hedgers on round number Our second hypothess s that the net poston of the trader type that nfluences round number effects s long poston below a round number and short poston above a round number. Excess buyng below a round number and excess sellng above a round number s drven by behavoural bas and therefore, s not assocated wth nformaton motvated tradng. A number of studes documents that unspecalsed traders have no nformaton analysng sklls and therefore, ther trades are more lkely to be motvated by behavoural bas whereas specalsed traders have better analysng sklls and nformaton and trade on nformaton (Nofsnger and Sas, 1999; Kamesaka, Nofsnger and Kawakta, 2003). Research on futures market shows that speculators are better traned and have better resources than hedgers. (Schwarz, 2012; Dewally, Ederngton and Fernando, 2013; Chen and Chang,2015). Earler research on prce clusterng fnds no evdence of what trader type nfluences prce clusterng at round numbers. In the prevous lterature, Bhattacharya, Holden and Jacobsen (2012) do not dscuss what trader type nfluences round number effects. Johnson and Shanthkumar (2007) examne whether unnformed traders nfluences stock-prce clusterng n US stock markets but they fnd no evdence. Davs, Van Ness, and Van Ness (2014) document evdence that better-nformed hgh-frequency traders exhbt less prce clusterng n ther transactons than non-hgh frequency traders. However, Davs, Van Ness, and Van Ness (2014) only suggest that prce clusterng s a result of human bas and provde no evdence that non-hgh frequency traders nfluences prce clusterng. In ths paper, we want to determne and test what trader type nfluences round number effects n WTI crude ol futures market. Ths gves our second hypothess: Hypothess 2 (H2). The net poston of the trader type that nfluences round number effects s long poston ust below a round number (e.g. $X.99) and short poston ust above a round number (e.g. $X.01) 11

12 2.3. Hypothess 3: the determnant of 24-hour trade return Bhattacharya, Holden and Jacobsen (2012) document evdence that round number effects s a maor determnant of 24-hour postve trade return and a tradng strategy based on round number effects generate $59.8 mllon per year n US stock markets. However, earler research on behavour-based trade shows that specalsed traders, who are better nformed and have better analysng sklls, trade for nformaton because ther net poston s postvely related to ther trade return whereas unspecalsed traders tradng s motvated by behavoural bas because ther net poston s negatvely related to ther trade return (Nofsnger and Sas, 1999; Kamesaka, Nofsnger and Kawakta, 2003). Usng data durng 1977 to 1996 for US stock markets, Nofsnger and Sas (1999) document tradng that earns hgh returns ndcates that the tradng was motvated by nformaton whereas tradng that results n a low return ndcates a behavoural-based motvaton. Kamesaka, Nofsnger and Kawakta (2003) also document strong evdence that tradng wth hgh returns ndcate that the tradng s motvated by nformaton whereas tradng wth low returns ndcate that the tradng s motvated by behavoural bas usng data durng 1980 to 1997 for Tokyo Stock Exchange. In futures market, speculators are specalsed traders because ther net poston s postvely related to ther trade return whereas hedgers are unspecalsed traders because ther net poston s negatvely related to ther trade return (Schwarz, 2012; Dewally, Ederngton and Fernando, 2013; Chen and Chang,2015). Usng data durng for energy futures market, Dewally, Ederngton and Fernando (2013) document evdence that mean hedger profts are negatve whereas speculator profts are postve and conclude that traders who hold net postons opposte sgn to hedgers have hgher profts than traders whose net postons algn wth hedgers. We examne whether round number effects s a maor determnant of 24-hour postve trade return as documented n Bhattacharya, Holden and Jacobsen (2012) n WTI crude ol futures market. Ths gves us our thrd hypothess. 12

13 Hypothess 3 (H4). Round number effects s a maor determnant of 24-hour postve trade return 2.4. Impacts of dfferent traders poston on prce volatlty Addtonally, we examne the mpacts of tradng actvty of hedgers and speculators on market lqudty and volatlty n WTI crude ol futures market. The boom and bust n commodty prces durng accompaned by substantal ncrease n tradng actvty of speculators and commodty nvestng (.e. fnancalzaton of commodty markets) has led to a renewed nterest n the potental effect of commodty futures tradng. There s ongong debate as to whether the tradng actvty of speculators has a destablzng role by ncreasng volatlty n commodty market. Thus, we partcularly focus on the mpacts of speculaton actvty on WTI crude ol futures market. The evdence s mxed. Sanders, Irwn and Merrn (2010) and Tll (2009) fnd that speculaton rses merely as a response to a rse n hedgng demand and speculaton s not to be blamed for the boom and bust of 2008 n commodty futures prce. Buyuksahn and Harrs (2011) test whether speculators has destablzng effect on commodty futures market and fnd lttle evdence that speculaton has harmful mpact. However, the percepton of the general publc and polcy makers s that there was actually excessve speculaton n the commodty futures markets whch had a destablzng effect on prce durng the boom and bust of Accordng to Chang, Chen, Chou, and Gau (2013), n 2009, the Commodty Futures Tradng Commsson (CFTC) mposed poston lmts n an attempt to control excessve speculaton and stablze prce movements n some futures markets ncludng Crude ol futures. 13

14 3. Data We use tck hstory data for West Texas lght (WTI) crude ol futures market for the perod from January 01, 1996 to October 31, 2015 from Thomson Reuters Tck Hstory (TRTH). TRTH database began n 1996, so ths s the startng pont. We collect tck data on quote and trade prce, trade volume, and the bd and ask quotes at a mllsecond frequency. We use one-hundred twenty WTI futures contracts. Our quote and transacton data cover both open-outcry and electronc tradng Roll over In order to avod thn tradng and expraton effects, we follow De Vlle de Goyet, Dhaene, and Sercu (2008) to construct contnung seres of the most actvely traded contracts. Followng De Vlle de Goyet, Dhaene, and Sercu (2008), we replace a contract that expres n month m wth the next nearest-to-maturty contract on the last day of month m 1. For example, March contract (CLH) expres n February (month m) but ts most actvely traded perod s January (month m 1). Thus, we only consder quotes and trades from January (month m 1) for the March contract. Specfcally, on the last day of month m 1, the last trade prce s the last observaton of the exprng contract whereas on the frst day of month m, the frst trade prce s the frst observaton of the new contract. Ths ensures that at roll-over. In total, we have over one-hundred ffty-two mllon trade observatons across one-hundred twenty actve WTI crude ol futures contracts Pre and Post-electronc perod Pror to September 3rd, 2006, tradng on U.S futures market was entrely n the openoutcry market. Now, tradng s largely on the electronc platform and ntermedated largely by electronc market makers. We dvde our sample data nto two subsample perods pre and post-electronc perods to explore the exstence of round number effects and to examne whether there was any change n round number effects. 14

15 The data sample for the pre-electronc perod s based on all trades and quotes over the perod from January 1, 1996 to September 2nd, 2006, contanng a total of over 3.9 mllon trade observatons. We begn our post-electronc sample perod on September 3rd, The post-electronc sample perod s based on all trades and quotes over the perod from September 3rd, 2006 to October 31, 2015, contanng a total of over 148 mllon trade observatons Buy-sell mbalances We follow the algorthm presented n Lee and Ready (1991) to assgn a trade drecton to each trade. We assgn a buy f the transacton prce s above the bd-ask mdpont and a sell f the transacton prce s below the bd-ask mdpont. The mdpont s defned as the average of the best bd and best ask prces. Trades executed exactly at the mdpont are classfed as nether buyer nor seller ntated and consdered as no trade. For each.xx prce pont, we aggregate all buys and all sells (for example, at $39.99, $40.99, $41.99, etc are aggregated at the.99 prce pont) for each day (or each week) and compute the buy-sell rato. For each day (or each week) nterval, we defne the buysell rato as Buy sell Rato t, = Buy t, Sell t, Buy t, + Sell t, (1) where Buy t, s the number of buys at.xx prce pont on day t and Sell,t s the number of sells at.xx prce pont on day t. Bhattacharya, Holden and Jacobsen (2012) compute the buy-sell rato n three dfferent ways as the number of buyer- less the number of seller-ntated trades, the number of buyer-ntated shares purchased less the number of seller-ntated shares sold and the dollars pad by buyer-ntators less the dollars receved by seller ntators. For all three buy-sell rato measures, Bhattacharya, Holden and Jacobsen (2012) fnd excess buyng ust below a round number and excess sellng ust above a round number. 15

16 We also compute buy-sell rato n three dfferent ways. For each day (or each week) nterval we compute the followng: OIB# t, : the proporton of the net buyer-ntated trades at.xx prce pont on day t; 2 OIBvol t, : the proporton of the net volume of buyer-ntated futures contact at.xx prce pont on day t; 3 OIB$ t, : the proporton of the net buyer-ntated dollar volume at.xx prce pont on day t; Hedger and speculator postons U.S Commodty Futures Tradng Commsson (CFTC) collects data on traders postons n futures market. CFTC collect the poston of commercal (commonly referred to as hedgers) and non-commercal traders (commonly referred to as speculators) and aggregates these data nto commtment of traders (COT) report every Tuesday and publsh t n the followng Frday. Thus, the COT reflects postons as of the precedng Tuesdays. The COT report categorses postons nto hedgers and speculators. Hedgers has some physcal dealngs or commercal nteracton wth the underlyng commodty and therefore face prce rsks n the cash market that they seek to offset or hedge n futures market. Speculators hold postons opposte those of hedgers, thereby provdng lqudty to the market wthout necessarly sufferng any physcal rsk exposure that needs to be offset. The nformaton n the COT reports allows us to separate speculators from hedgers. Ths enables us to examne whether tradng actvty of hedgng or speculatng nfluences round number effects. We use the weekly COT for the post-electronc perod from September 7, 2006 to 31 October The net buyer-ntated s defned as number of buyer-ntated trades less the number of seller-ntated trades 3 The net volume of buyer-ntated futures contact s defned as the volume of buyer-ntated futures contact less the volume of seller-ntated futures 4 The net buyer-ntated dollar volume s defned as the buyer-ntated dollar volume less seller-ntated dollar volume 16

17 For each week nterval, we compute the net poston to proxy for the tradng actvty of hedgers and speculators. The net poston of for each category of traders s defned as T t, = Long t, Short t, Long t, + Short t, (2) where Long,t and Short,t s long and short poston of trader type at.xx prce ponts n week t and T t, s the net poston of trader type at.xx prce ponts n week t and defned as the proporton of net long poston (.e. net buy-ntated trades) at prce ponts n week t To examne the relaton between net postons (.e. order flow) of dfferent traders and buy-sell ratos, we aggregate all buys and all sells for each week nstead of each day for each.xx prce pont and compute buy-sell rato Lqudty and volatlty For each week nterval, we compute the followng measures of lqudty and volatlty: We use s the relatve bd-ask spread to proxy for the lqudty. We calculate the relatve bd-ask spread by takng the dfference between bd prce and ask prce and then dvde t by the average of the bd and ask prce (.e. mdpont prce). For each.xx prce pont, we take the average bd-ask spread for each week durng the post-electronc perod. Spread t, : the relatve bd-ask spread at.xx prce ponts n week t We use the standard devaton of prce return to proxy for the volatlty. We measure prces n natural logs and calculate returns usng the percentage change n the last traded prce. For each.xx prce pont, we calculate the standard devaton of prce return for each week durng the post-electronc perod. retvol t, : the volatlty at.xx prce ponts n week t 17

18 4. Methodology Our frst hypothess s to test whether round number effects exst n WTI Crude ol futures market. Excess buyng ust below a round number ($X.99) and excess sellng ust above a round number ($X.01) s the mplcaton of round number effects. We formally test the exstence of round number effects n WIT Crude ol market for both pre and post-electronc perods by runnng the regresson of buy-sell rato on prce ponts, wth partcular focus on ust below a round number and ust above a round number. We mplement three-regressons based on three versons of the buy-sell ratos: OIB#, OIBvol and OIB$. A postve coeffcent on ust below a round number ndcates excess buyng and a negatve coeffcent on ust above a round number ndcates excess sellng. The followng model tests the frst hypothess: Buysell t, = α t, + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + ε t, (3) where the dependent varable Buysell t, s the buy-sell rato at.xx prce ponts on day t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 on day t. In condtonal buy-sell mbalance test, we explore whch of three round number effects domnate n WTI crude ol futures market. Followng, Bhattacharya, Holden and Jacobsen (2012), we test whether buy trades outnumber sell trades after ask prces fall ust below a round number and sells outnumber ther buys after bd prces rse ust above a round number. We use nckel as a benchmark to round number. We conduct four condtonal buy-sell mbalance: ask falls below round number, ask falls to round number, bd rses to round number, bd rses above round number samples and ther correspondng ask falls below nckel, ask falls to nckel, bd rses to nckel, bd rses above nckel samples. We use t-statstc to assess the sgnfcance. t-statstc s computed as follow tstat = x 1 x 2 σ 1 n 1 + σ 2 n 2 18

19 (4) where x 1s ether medan or mean buy-sell ratos, σ 1 s the standard devaton, and n 1 s the number of observaton for round numbers and x 2s ether medan or mean buy-sell ratos, σ 2 s the standard devaton, and n 2 s the number of observaton for nck benchmarks Our second hypothess s to explore what type of traders nfluences round number effects. Usng COT data, we want to determne what knd of traders (.e. hedgers or speculators) nfluences round number effects n futures market. We use the net poston defned n equaton (2) to proxy for the tradng actvty of dfferent types of traders. We expand the regresson model n equaton (3) to nclude nteracton varables that captures the tradng actvty of hedgers and speculators at prce ponts $X.01, $X.49, $X.51 and $X.99 to test for the second hypothess. Snce COT provdes weekly data, for each.xx prce pont, we aggregate all buys and all sells (for example, at $39.99, $40.99, $41.99, etc are aggregated at the.99 prce pont) for each week and compute the buy-sell rato. We then mplement three-regressons based on three versons of the buy-sell ratos as n the followng model: Buysell t, = α + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + α 1 X t,01 T t,01 + α 3 X t,51 T t,51 + α 4 X t,99 T t,99 + β 5 T t, + ε + α 2 X t,49 T t,49 where the dependent varable Buysell t s the buy-sell rato at.xx prce ponts n week t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 n week t. T t, s the net poston of trader type at.xx prce ponts n week t and X t,01 T t,01, X t,49 T t,49, X t,51 T t,51, X t,99 T t,99 are the net poston held by trader type at prce ponts $X.01, $X.49, $X.51 and $X.99 n week t. (5) The net poston of the trader type that nfluences round number effects ust below a round number s long poston and ust above a round number s short poston. A postve coeffcent on nteracton term for ust below a round number ndcates long 19

20 poston and a negatve coeffcent on nteracton term for ust above a round number ndcates short poston. Our thrd hypothess tests whether round number effects s a maor determnant of 24- hour postve trade return n WTI crude ol futures market as documented n Bhattacharya, Holden and Jacobsen (2012). If traders use a round number as reference pont for value, a potental proftable strategy s sell above a round number and buy below a round number. We compute 24-hour trade return as follow. For every buy trade observaton ust below a round number (X.99), we buy at the actual trade prce below a round number and sell at the bd prce 24 hours later to close the poston and compute 24-hour trade return. For example, f there s a buy at 11:00 a.m. on day t, we sell at the bd prce at 11:00 a.m. on the next day t + 1. Smlarly, for every sell trade observaton above a round number (X.X01), we sell at the actual trade prce above a round number and buy at the ask prce 24 hours later to close the poston and compute 24-hour trade return. For each.xx prce pont, we end up wth two return categores: (1) the 24-hour trade return to buy, (2) the 24-hour trade return to sell. We take the medan 24-hour trade return by takng the dfference between medan 24-hour trade return to buy and medan 24-hour trade return to sell. We then run the regresson of 24-hour trade return on prce ponts as n the followng model: 24hour trade return t, = α,t + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + ε,t (6) where the dependent varable s 24-hour trade return at.xx prce ponts on day t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 on day t A postve coeffcent on ntercept ndcates that average 24-hour trade return s postve. Next, as a robustness check, we control for lqudty and volatlty. Frst, we test whether round number effects persst after controllng for the lqudty. We use s the relatve bd-ask spread to proxy for lqudty. We calculate the relatve bd-ask spread by takng 20

21 the dfference between bd prce and ask prce and then dvde t by the average of the bd and ask prce (.e. mdpont prce). For each.xx prce pont, we take the average bd-ask spread for each week durng the post-electronc perod. A hgh bd-ask spread ndcates low lqudty. A postve coeffcent mples wder bd-ask spread (.e. larger tradng costs) and lower market lqudty condtons whereas a negatve coeffcent mples narrower bd-ask spread (.e. smaller tradng costs) and hgher market lqudty condtons n commodty futures market. We also nclude nteracton varables that captures mpacts of net postons held by dfferent trader types at prce ponts $X.01, $X.49, $X.51 and $X.99 on lqudty. We estmate the followng regresson to test whether round number effects persst after controllng for lqudty: Buysell t, = α t, + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + α 1 X t,01 T t,01 + α 3 X t,51 T t,51 + α 6 X t,49 T t,49 + β 6 Spread t, + ε t, + α 4 X t,99 T t,99 + β 5 T t, + α 5 X t,01 T t,01 Spread t,01 + α 2 X t,49 T t,49 Spread t,49 + α 7 X t,51 T t,51 Spread t,51 + α 8 X t,99 T t,99 Spread t,99 where the dependent varable Buysell t, s the buy-sell rato at.xx prce ponts n week t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 n week t, T t, t and X t,01 T t,01 s the net poston of trader type at.xx prce ponts n week, X t,49 T t,49, X t,51 T t,51, X t,99 T t,99 are the net poston held by trader type at prce ponts $X.01, $X.49, $X.51 and $X.99 n week t. Spread t, s the relatve bd-ask spread at.xx prce ponts n week t and X t,01 T t,01 Spread t,01, X t,49 T t,49 Spread t,49, X t,51 T t,51 Spread t,51, X t,99 T t,99 Spread t,99 are nteracton varables that capture the mpact of the net poston held by trader type on lqudty at prce ponts $X.01, $X.49, $X.51 and $X.99 n week t. (7) Next, we test whether round number effects persst after controllng for volatlty. We use the standard devaton of prce return to proxy for the volatlty. We measure prces n natural logs and calculate returns usng the percentage change n the last traded prce. 21

22 For each.xx prce pont, we calculate the standard devaton of prce return for each week durng the post-electronc perod. We nclude nteracton varables that captures mpacts of net postons held by dfferent trader types at prce ponts $X.01, $X.49, $X.51 and $X.99 on volatlty. Addtonally, we also examne mpacts of net postons of hedgers and speculators on volatlty. We estmate the followng regresson to test whether round number effects persst after controllng for volatlty: Buysell t, = α t, + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + α 1 X t,01 T t,01 + α 3 X t,51 T t,51 + α 6 X t,49 T t,49 + β 6 retvol t, + ε t, + α 4 X t,99 T t,99 + β 5 T t, + α 5 X t,01 T t,01 retvol t,01 + α 2 X t,49 T t,49 retvol t,49 + α 7 X t,51 T t,51 retvol t,51 + α 8 X t,99 T t,99 retvol t,99 where the dependent varable Buysell t s the buy-sell rato at.xx prce ponts n week t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 n week t. T t, s the net poston of trader type at.xx prce ponts n week t and X t,01 T t,01, X t,49 T t,49, X t,51 T t,51, X t,99 T t,99 are the net poston held by trader type at prce ponts $X.01, $X.49, $X.51 and $X.99 n week t. retvol t, s volatlty at.xx prce ponts n week t and X t,01 T t,01 X t,99 T t,99 retvol t,01, X t,49 T t,49 retvol t,49, X t,51 T t,51 retvol t,51, retvol t,99 are nteracton varables that capture the mpact of the net poston held by trader type on volatlty at prce ponts $X.01, $X.49, $X.51 and $X.99 n week t (8) 22

23 Medan buy-sell rato 5. Emprcal results 5.1. Summary statstcs durng pre-electronc Perod To obtan a prelmnary vew of the exstence of round number effects, we present descrptve statstcs for the medan buy-sell rato for each day at prce ponts from X.01 to X.99 durng the pre-electronc perod (January 1, 1996 to September 2nd, 2006) n Fgures 1-4. The buy-sell rato patterns at prce ponts n Fgures 1-3 resembles that of documented n Bhattacharya, Holden and Jacobsen (2012). The sample ncludes total of over 3.9 mllon trade observatons. Fgure 1 shows the medan proporton of the net buyer-ntated trades by.xx prce pont, Fgure 2 shows the medan proporton of the net volume of buyer-ntated futures contact by.xx prce pont and Fgure 3 shows the medan proporton of the net buyer-ntated dollar volume by.xx prce pont. These medan buy-sell rato fgures show a regular pattern every ten cents. All three fgures show that at trade prce endng n X.X9 buy trades exceeds sell trades whereas at trade prce endng n X.X1 sell trades exceeds buy trades. The man message emergng from Fgures 1 4 s that round number effects exst n WTI crude ol futures market. Fgures 1 3 are the evdence n favour of Threshold trgger effect as X.X0 and X.X5 are round numbers n decreasng order of roundness. As the left-dgt changes around X.X0, Fgures 1 3 are also evdence n favour of left-dgt effect. Fgure 1 Medan proporton of the net buyer-ntated trades at.xx Prce Ponts Fgure 1 Medan proporton of the net buyer-ntated trades at.xx Prce Ponts 23

24 Medan dollar Bought-Sold Rato Medan volume bought-sold rato Fgure 2 Medan proporton of the net volume of buyer-ntated futures contact at.xx Prce Ponts Fgure 2 Medan proporton of the net volume of buyer-ntated futures contact at.xx Prce Ponts Fgure 3 Medan proporton of the net buyer-ntated dollar volume at.xx Prce Ponts Fgure 3 Medan proporton of the net buyer-ntated dollar volume at.xx Prce Ponts 24

25 Buy-Sell rato 20.00% Buy-Sell Rato by Penny-Endng Prce Pont 15.00% 10.00% 5.00% 0.00% -5.00% % % % Buy-Sell rato by each endng dgt Volume bought-sold rato by each endng dgt Dollar bought-sold rato by each endng dgt Fgure 4 Buy-sell Rato by Penny-Endng Prce Ponts Fgure 4 explores ths further by showng the medan buy-sell ratos by penny-endng prce ponts: X0,.X1,,.X9. Interestngly, the pattern of buy-sell ratos by pennyendng prce ponts s nearly dentcal for all three buy-sell rato measures and all three buy-sell ratos show that the hghest ratos of buy-sell occurs trade prces endng n.x9, and the lowest rato of buy-sell occurs at trades endng n.x1. Smlarly, the second hghest ratos of buy-sell occurs trade prces endng n.x4, and the second lowest rato of buy-sell occurs at trades endng n.x6. In other words, the largest mbalances occur at the prce ponts surroundng X.X0 and the next largest mbalances occur at the prce ponts surroundng X.X5. Fgure 4 s the evdence n favour of Threshold trgger effect as dollars and half-dollars n decreasng order of roundness. As the left-dgt changes around X.00 and X.X0, Fgure 4 s also n favour of left-dgt effect. Fnally, Fgures 1 4 are also evdence n favour of the clusterng undercuttng effect as ths effect occurs around X.00 and X.X0. Lmt orders clustered on X.X0 are undercut by lmt sells at.x9 to yeld excess buyng at.x9, and undercut by lmt buys at.x1 to yeld excess sellng at.x1. Fgures 1 4 suggest that buyng and sellng at each prce pont s not unformly dstrbuted and the buy-sell mbalance patterns at each prce pont share the same lmtaton: they are based on statc prces. 25

26 The above observatons lead us to examne the exstence of round number effects n commodty futures market. We formalze these observatons n the next secton by estmatng the regresson as specfed n equaton (5) Hypothess 1: exstence of round number effects durng pre-electronc perod In ths secton, we examne evdence of exstence of round number effects durng the pre-electronc perod. Here, the obectve s to explore whether round number effects exst n WTI crude ol futures market. In Table 1, we present test results of hypothess 1 as specfed n equaton (4) for three regressons based on three versons of buy-sell ratos. Results n Table 1 show that for all three regressons, the coeffcents on ust below a round number (X.99) are all postve and statstcally sgnfcant at 1 percent level, ndcatng excess buyng ust below a round number. The results support the marketng research by Thomas and Morwtz (2005) who fnd 9-endng prce s perceved to be substantally lower than a 0-endng prce when the leftmost dgt changes. The results show that the opposte s true for the coeffcents ust above a round number (X.01). The coeffcents on ust above a round number are all negatve and statstcally sgnfcant at 1 percent level, ndcatng excess sellng ust above a round number. These results are consstent wth the predcton of round number effects and we confrm the exstence of round number effects n WTI crude ol futures market. The fndng of excess buyng ust below a round number (X.99) and excess sellng ust above a round number (X.01) s consstent wth prevous research (Bhattacharya, Holden and Jacobsen, 2012). In addton, the results n Table 1 also show that for all three regressons, the coeffcents on ust below a half-dollar are all postve and statstcally sgnfcant at 1 percent level and the coeffcents on ust above a half-dollar are all negatve and statstcally sgnfcant at 1 percent level. The results are consstent wth threshold trgger effect that nvestors have a preference for round numbers where the herarchy of roundness from the most round to the least round s whole dollars, half-dollars (.e. the mdpont of round number), quarters, dmes, nckels and pennes. 26

27 Overall, we fnd evdence that round number effects exst durng the pre-electronc perod. Table 1 Three regressons based on three versons of buy-sell ratos on prce ponts $X.01, $X.49, $X.51 and $X.99 OIB# p-value OIBVol p-value OIB$ p-value Intercept *** *** *** X t, *** *** *** X t, *** *** *** X t, *** *** *** X t, *** *** *** ***,**,* Means statstcally sgnfcant at the 1 %, 5%, and 10% level respectvely Buysell t, = α t, + β 1 X t,01 + β 2 X t,49 + β 3 X t,51 + β 4 X t,99 + ε t, where the dependent varable Buysell t, s the buy-sell rato at.xx prce ponts on day t and X t,01, X t,49, X t,51, X t,99 are prce ponts dummy varables for $X.01, $X.49, $X.51 and $X.99 on day t. The data sample for the pre-electronc perod s based on all trades and quotes over the perod from January 1, 1996 to September 2nd, 2006, contanng a total of over 3.9 mllon trade observatons. (4) 27

28 Sep-06 Feb-07 Jul-07 Dec-07 May-08 Oct-08 Mar-09 Aug-09 Jan-10 Jun-10 Nov-10 Apr-11 Sep-11 Feb-12 Jul-12 Dec-12 May-13 Oct-13 Mar-14 Aug-14 Jan-15 Jun Summary statstcs durng post-electronc perod We contnue explorng the exstence of round number effects for the post-electronc perod. On September 3, 2006, U.S. commodty futures market ntroduced the electronc platform and snce then there has been a substantal ncrease n tradng actvty of speculators and commodty nvestng n commodty futures market as shown n Fgure 5 and 6. In our data, whle we only observe the total of 3.9 mllon trade observatons durng the pre-electronc perod, we observe the total of 148 mllon trade observatons n the post-electronc perod and that s nearly 38 tmes more trade observatons than that of post-electronc perod. Durng the boom and bust of commodty prce n 2008, nvestors held ther bggest poston on record n the commodty futures market Tradng Volume Actvty Fgure 5 shows the Crude ol futures daly average tradng volume (n contracts) from September 03, 2006 to October 31,

29 Sep-06 Feb-07 Jul-07 Dec-07 May-08 Oct-08 Mar-09 Aug-09 Jan-10 Jun-10 Nov-10 Apr-11 Sep-11 Feb-12 Jul-12 Dec-12 May-13 Oct-13 Mar-14 Aug-14 Jan-15 Jun Dollar Fgure 6 shows the WTI daly average dollar tradng from September 2006 to October 2015 To obtan a prelmnary vew of the exstence of round number effects n the postelectronc perod (September 3rd, 2006 to October 31, 2015), we present descrptve statstcs for medan buy-sell rato for each day at prce ponts from X.01 to X.99 durng the post-electronc perod n Fgures Fgure 7 shows the medan proporton of the net buyer-ntated trades by.xx prce pont, Fgure 8 shows the medan proporton of the net volume of buyer-ntated futures contact by.xx prce pont and Fgure 9 shows the medan proporton of the net buyer-ntated dollar volume by.xx prce pont. Fgures 7 9 show smlar buy-sell rato patterns to that of pre-electronc perod. All three fgures show that at trade prce endng ust below dollars, half-dollars, quarters, dmes and nckels (.e. X.99, X.49, X.24, X.09, X.04) buy trades exceeds sell trades whereas at trade prce endng ust above dollars, half-dollars, quarters, dmes and nckels (.e. X.01, X.51, X.26, X.11, X.06) sell trades exceeds buy trades. Fgures 7 9 are the evdence n favour of Threshold trgger effect as dollars, half-dollars, quarters, dmes and nckels are round numbers n decreasng order of roundness. As the left-dgt changes around X.X0, Fgures 7 9 are also evdence n favour of left-dgt effect. 29

THE VOLATILITY OF EQUITY MUTUAL FUND RETURNS

THE VOLATILITY OF EQUITY MUTUAL FUND RETURNS North Amercan Journal of Fnance and Bankng Research Vol. 4. No. 4. 010. THE VOLATILITY OF EQUITY MUTUAL FUND RETURNS Central Connectcut State Unversty, USA. E-mal: BelloZ@mal.ccsu.edu ABSTRACT I nvestgated

More information

NYSE Specialists Participation in the Posted Quotes

NYSE Specialists Participation in the Posted Quotes European Journal of Economc and Poltcal Studes NYSE Specalsts Partcpaton n the Posted Quotes Bülent Köksal 1 Abstract: Usng 2001 NYSE system order data n the decmal prcng envronment, we analyze how the

More information

MgtOp 215 Chapter 13 Dr. Ahn

MgtOp 215 Chapter 13 Dr. Ahn MgtOp 5 Chapter 3 Dr Ahn Consder two random varables X and Y wth,,, In order to study the relatonshp between the two random varables, we need a numercal measure that descrbes the relatonshp The covarance

More information

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x Whch of the followng provdes the most reasonable approxmaton to the least squares regresson lne? (a) y=50+10x (b) Y=50+x (c) Y=10+50x (d) Y=1+50x (e) Y=10+x In smple lnear regresson the model that s begn

More information

Evaluating Performance

Evaluating Performance 5 Chapter Evaluatng Performance In Ths Chapter Dollar-Weghted Rate of Return Tme-Weghted Rate of Return Income Rate of Return Prncpal Rate of Return Daly Returns MPT Statstcs 5- Measurng Rates of Return

More information

R Square Measure of Stock Synchronicity

R Square Measure of Stock Synchronicity Internatonal Revew of Busness Research Papers Vol. 7. No. 1. January 2011. Pp. 165 175 R Square Measure of Stock Synchroncty Sarod Khandaker* Stock market synchroncty s a new area of research for fnance

More information

On the Style Switching Behavior of Mutual Fund Managers

On the Style Switching Behavior of Mutual Fund Managers On the Style Swtchng Behavor of Mutual Fund Managers Bart Frjns Auckland Unversty of Technology, Auckland, New Zealand Auckland Centre for Fnancal Research Aaron Glbert Auckland Unversty of Technology,

More information

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed.

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed. Fnal Exam Fall 4 Econ 8-67 Closed Book. Formula Sheet Provded. Calculators OK. Tme Allowed: hours Please wrte your answers on the page below each queston. (5 ponts) Assume that the rsk-free nterest rate

More information

>1 indicates country i has a comparative advantage in production of j; the greater the index, the stronger the advantage. RCA 1 ij

>1 indicates country i has a comparative advantage in production of j; the greater the index, the stronger the advantage. RCA 1 ij 69 APPENDIX 1 RCA Indces In the followng we present some maor RCA ndces reported n the lterature. For addtonal varants and other RCA ndces, Memedovc (1994) and Vollrath (1991) provde more thorough revews.

More information

occurrence of a larger storm than our culvert or bridge is barely capable of handling? (what is The main question is: What is the possibility of

occurrence of a larger storm than our culvert or bridge is barely capable of handling? (what is The main question is: What is the possibility of Module 8: Probablty and Statstcal Methods n Water Resources Engneerng Bob Ptt Unversty of Alabama Tuscaloosa, AL Flow data are avalable from numerous USGS operated flow recordng statons. Data s usually

More information

Domestic Savings and International Capital Flows

Domestic Savings and International Capital Flows Domestc Savngs and Internatonal Captal Flows Martn Feldsten and Charles Horoka The Economc Journal, June 1980 Presented by Mchael Mbate and Chrstoph Schnke Introducton The 2 Vews of Internatonal Captal

More information

Clearing Notice SIX x-clear Ltd

Clearing Notice SIX x-clear Ltd Clearng Notce SIX x-clear Ltd 1.0 Overvew Changes to margn and default fund model arrangements SIX x-clear ( x-clear ) s closely montorng the CCP envronment n Europe as well as the needs of ts Members.

More information

Corporate Governance and Equity Liquidity: An Analysis of S&P Transparency and Disclosure Ranking

Corporate Governance and Equity Liquidity: An Analysis of S&P Transparency and Disclosure Ranking Corporate Governance and Equty Lqudty: An Analyss of S&P Transparency and Dsclosure Rankng We-Peng Chen Humn Chung Cheng-few Lee We-L Lao ABSTRACT Ths paper nvestgates the effects of dsclosure and other

More information

SYSTEMATIC LIQUIDITY, CHARACTERISTIC LIQUIDITY AND ASSET PRICING. Duong Nguyen* Tribhuvan N. Puri*

SYSTEMATIC LIQUIDITY, CHARACTERISTIC LIQUIDITY AND ASSET PRICING. Duong Nguyen* Tribhuvan N. Puri* SYSTEMATIC LIQUIDITY, CHARACTERISTIC LIQUIDITY AND ASSET PRICING Duong Nguyen* Trbhuvan N. Pur* Address for correspondence: Trbhuvan N. Pur, Professor of Fnance Char, Department of Accountng and Fnance

More information

Highlights of the Macroprudential Report for June 2018

Highlights of the Macroprudential Report for June 2018 Hghlghts of the Macroprudental Report for June 2018 October 2018 FINANCIAL STABILITY DEPARTMENT Preface Bank of Jamaca frequently conducts assessments of the reslence and strength of the fnancal system.

More information

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge Sganos, A. (2013) Google attenton and target prce run ups. Internatonal Revew of Fnancal Analyss. ISSN 1057-5219 Copyrght 2012 Elsever A copy can be downloaded for personal non-commercal research or study,

More information

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS QUESTIONS 9.1. (a) In a log-log model the dependent and all explanatory varables are n the logarthmc form. (b) In the log-ln model the dependent varable

More information

The Effects of Industrial Structure Change on Economic Growth in China Based on LMDI Decomposition Approach

The Effects of Industrial Structure Change on Economic Growth in China Based on LMDI Decomposition Approach 216 Internatonal Conference on Mathematcal, Computatonal and Statstcal Scences and Engneerng (MCSSE 216) ISBN: 978-1-6595-96- he Effects of Industral Structure Change on Economc Growth n Chna Based on

More information

Speed and consequences of venture capitalist post-ipo exit

Speed and consequences of venture capitalist post-ipo exit Speed and consequences of venture captalst post-ipo ext Imants Paegls * and Paranen Veeren ** Ths verson: January, 2010 * John Molson School of Busness, Concorda Unversty, 1450 Guy St. Montreal, QC, H1H

More information

Firm fundamentals, short selling, and stock returns. Abstract

Firm fundamentals, short selling, and stock returns. Abstract Frm fundamentals, short sellng, and stock returns Yulang Wu a and Khelfa Mazouz b* Abstract Ths study uses short sellng actvty to test whether the relaton between fundamentals and future returns s due

More information

Price and Quantity Competition Revisited. Abstract

Price and Quantity Competition Revisited. Abstract rce and uantty Competton Revsted X. Henry Wang Unversty of Mssour - Columba Abstract By enlargng the parameter space orgnally consdered by Sngh and Vves (984 to allow for a wder range of cost asymmetry,

More information

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode.

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode. Part 4 Measures of Spread IQR and Devaton In Part we learned how the three measures of center offer dfferent ways of provdng us wth a sngle representatve value for a data set. However, consder the followng

More information

ASSET LIQUIDITY, STOCK LIQUIDITY, AND OWNERSHIP CONCENTRATION: EVIDENCE FROM THE ASE

ASSET LIQUIDITY, STOCK LIQUIDITY, AND OWNERSHIP CONCENTRATION: EVIDENCE FROM THE ASE ASSET LIQUIDITY, STOCK LIQUIDITY, AND OWNERSHIP CONCENTRATION: EVIDENCE FROM THE ASE Ghada Tayem*, Mohammad Tayeh**, Adel Bno** * Correspondng author: Department of Fnance, School of Busness, The Unversty

More information

TRADING RULES IN HOUSING MARKETS WHAT CAN WE LEARN? GREG COSTELLO Curtin University of Technology

TRADING RULES IN HOUSING MARKETS WHAT CAN WE LEARN? GREG COSTELLO Curtin University of Technology ABSTRACT TRADING RULES IN HOUSING MARKETS WHAT CAN WE LEARN? GREG COSTELLO Curtn Unversty of Technology Ths paper examnes the applcaton of tradng rules n testng nformatonal effcency n housng markets. The

More information

Tests for Two Correlations

Tests for Two Correlations PASS Sample Sze Software Chapter 805 Tests for Two Correlatons Introducton The correlaton coeffcent (or correlaton), ρ, s a popular parameter for descrbng the strength of the assocaton between two varables.

More information

Spurious Seasonal Patterns and Excess Smoothness in the BLS Local Area Unemployment Statistics

Spurious Seasonal Patterns and Excess Smoothness in the BLS Local Area Unemployment Statistics Spurous Seasonal Patterns and Excess Smoothness n the BLS Local Area Unemployment Statstcs Keth R. Phllps and Janguo Wang Federal Reserve Bank of Dallas Research Department Workng Paper 1305 September

More information

Asset Management. Country Allocation and Mutual Fund Returns

Asset Management. Country Allocation and Mutual Fund Returns Country Allocaton and Mutual Fund Returns By Dr. Lela Heckman, Senor Managng Drector and Dr. John Mulln, Managng Drector Bear Stearns Asset Management Bear Stearns Actve Country Equty Executve Summary

More information

Method of Payment and Target Status: Announcement Returns to Acquiring Firms in the Malaysian Market

Method of Payment and Target Status: Announcement Returns to Acquiring Firms in the Malaysian Market Method of Payment and Target Status: Announcement Returns to Acqurng Frms n the Malaysan Market Mansor Isa Faculty of Busness and Accountancy, Unversty of Malaya Lembah Panta, 50603 Kuala Lumpur, Malaysa

More information

AN ANALYSIS OF LIQUIDITY ACROSS MARKETS: EXECUTION COSTS ON THE NYSE VERSUS ELECTRONIC MARKETS

AN ANALYSIS OF LIQUIDITY ACROSS MARKETS: EXECUTION COSTS ON THE NYSE VERSUS ELECTRONIC MARKETS In: Lqudty, Interest Rates and Bankng ISBN: 978-1-60692-775-5 Edtors: J. Morrey and A. Guyton, pp. 139-167 2009 Nova Scence Publshers, Inc. Chapter 7 AN ANALYSIS OF LIQUIDITY ACROSS MARKETS: EXECUTION

More information

Positive feedback trading under stress: Evidence from the US Treasury securities market

Positive feedback trading under stress: Evidence from the US Treasury securities market Postve feedback tradng under stress: Evdence from the US Treasury securtes market Frst draft: October 2001 Ths draft: May 2003 Benjamn H Cohen Internatonal Monetary Fund Independent Evaluaton Offce 1776

More information

An Application of Alternative Weighting Matrix Collapsing Approaches for Improving Sample Estimates

An Application of Alternative Weighting Matrix Collapsing Approaches for Improving Sample Estimates Secton on Survey Research Methods An Applcaton of Alternatve Weghtng Matrx Collapsng Approaches for Improvng Sample Estmates Lnda Tompkns 1, Jay J. Km 2 1 Centers for Dsease Control and Preventon, atonal

More information

Tests for Two Ordered Categorical Variables

Tests for Two Ordered Categorical Variables Chapter 253 Tests for Two Ordered Categorcal Varables Introducton Ths module computes power and sample sze for tests of ordered categorcal data such as Lkert scale data. Assumng proportonal odds, such

More information

Money, Banking, and Financial Markets (Econ 353) Midterm Examination I June 27, Name Univ. Id #

Money, Banking, and Financial Markets (Econ 353) Midterm Examination I June 27, Name Univ. Id # Money, Bankng, and Fnancal Markets (Econ 353) Mdterm Examnaton I June 27, 2005 Name Unv. Id # Note: Each multple-choce queston s worth 4 ponts. Problems 20, 21, and 22 carry 10, 8, and 10 ponts, respectvely.

More information

Informational Content of Option Trading on Acquirer Announcement Return * National Chengchi University. The University of Hong Kong.

Informational Content of Option Trading on Acquirer Announcement Return * National Chengchi University. The University of Hong Kong. Informatonal Content of Opton Tradng on Acqurer Announcement Return * Konan Chan a, b,, L Ge b,, and Tse-Chun Ln b, a Natonal Chengch Unversty b The Unversty of Hong Kong May, 2012 Abstract Ths paper examnes

More information

ISE High Income Index Methodology

ISE High Income Index Methodology ISE Hgh Income Index Methodology Index Descrpton The ISE Hgh Income Index s desgned to track the returns and ncome of the top 30 U.S lsted Closed-End Funds. Index Calculaton The ISE Hgh Income Index s

More information

Monetary Tightening Cycles and the Predictability of Economic Activity. by Tobias Adrian and Arturo Estrella * October 2006.

Monetary Tightening Cycles and the Predictability of Economic Activity. by Tobias Adrian and Arturo Estrella * October 2006. Monetary Tghtenng Cycles and the Predctablty of Economc Actvty by Tobas Adran and Arturo Estrella * October 2006 Abstract Ten out of thrteen monetary tghtenng cycles snce 1955 were followed by ncreases

More information

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999 FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS by Rchard M. Levch New York Unversty Stern School of Busness Revsed, February 1999 1 SETTING UP THE PROBLEM The bond s beng sold to Swss nvestors for a prce

More information

Investor Behavior over the Rise and Fall of Nasdaq

Investor Behavior over the Rise and Fall of Nasdaq nvestor Behavor over the Rse and Fall of Nasdaq JOHN M. GRFFN, JEFFREY H. HARRS, AND SELM TOPALOGLU * September 4, 2003 * Grffn s vstng at Yale Unversty and on faculty at the Unversty of Texas at Austn,

More information

OCR Statistics 1 Working with data. Section 2: Measures of location

OCR Statistics 1 Working with data. Section 2: Measures of location OCR Statstcs 1 Workng wth data Secton 2: Measures of locaton Notes and Examples These notes have sub-sectons on: The medan Estmatng the medan from grouped data The mean Estmatng the mean from grouped data

More information

Jenee Stephens, Dave Seerattan, DeLisle Worrell Caribbean Center for Money and Finance 41 st Annual Monetary Studies Conference November 10 13, 2009

Jenee Stephens, Dave Seerattan, DeLisle Worrell Caribbean Center for Money and Finance 41 st Annual Monetary Studies Conference November 10 13, 2009 Jenee Stephens, ave Seerattan, esle Worrell Carbbean Center for Money and nance 41 st Annual Monetary Studes Conference November 10 13, 2009 1 OUTINE! Introducton! Revew of lterature! The Model! Prelmnary

More information

Chapter 5 Bonds, Bond Prices and the Determination of Interest Rates

Chapter 5 Bonds, Bond Prices and the Determination of Interest Rates Chapter 5 Bonds, Bond Prces and the Determnaton of Interest Rates Problems and Solutons 1. Consder a U.S. Treasury Bll wth 270 days to maturty. If the annual yeld s 3.8 percent, what s the prce? $100 P

More information

Market Opening and Stock Market Behavior: Taiwan s Experience

Market Opening and Stock Market Behavior: Taiwan s Experience Internatonal Journal of Busness and Economcs, 00, Vol., No., 9-5 Maret Openng and Stoc Maret Behavor: Tawan s Experence Q L * Department of Economcs, Texas A&M Unversty, U.S.A. and Department of Economcs,

More information

MODELING THE BID/ASK SPREAD: On the Effects of Hedging Costs and Competition

MODELING THE BID/ASK SPREAD: On the Effects of Hedging Costs and Competition NICOLAS P.B. BOLLEN TOM SMITH ROBERT E. WHALEY * MODELING THE BID/ASK SPREAD: On the Effects of Hedgng Costs and Competton ABSTRACT The need to understand and measure market maker bd/ask spreads s crucal

More information

Hybrid Tail Risk and Expected Stock Returns: When Does the Tail Wag the Dog?

Hybrid Tail Risk and Expected Stock Returns: When Does the Tail Wag the Dog? Hybrd Tal Rsk and Expected Stock Returns: When Does the Tal Wag the Dog? Turan G. Bal, a Nusret Cakc, b and Robert F. Whtelaw c* ABSTRACT Ths paper ntroduces a new, hybrd measure of covarance rsk n the

More information

Chapter 3 Student Lecture Notes 3-1

Chapter 3 Student Lecture Notes 3-1 Chapter 3 Student Lecture otes 3-1 Busness Statstcs: A Decson-Makng Approach 6 th Edton Chapter 3 Descrbng Data Usng umercal Measures 005 Prentce-Hall, Inc. Chap 3-1 Chapter Goals After completng ths chapter,

More information

Chapter 10 Making Choices: The Method, MARR, and Multiple Attributes

Chapter 10 Making Choices: The Method, MARR, and Multiple Attributes Chapter 0 Makng Choces: The Method, MARR, and Multple Attrbutes INEN 303 Sergy Butenko Industral & Systems Engneerng Texas A&M Unversty Comparng Mutually Exclusve Alternatves by Dfferent Evaluaton Methods

More information

Risk Reduction and Real Estate Portfolio Size

Risk Reduction and Real Estate Portfolio Size Rsk Reducton and Real Estate Portfolo Sze Stephen L. Lee and Peter J. Byrne Department of Land Management and Development, The Unversty of Readng, Whteknghts, Readng, RG6 6AW, UK. A Paper Presented at

More information

Lecture Note 2 Time Value of Money

Lecture Note 2 Time Value of Money Seg250 Management Prncples for Engneerng Managers Lecture ote 2 Tme Value of Money Department of Systems Engneerng and Engneerng Management The Chnese Unversty of Hong Kong Interest: The Cost of Money

More information

Real Exchange Rate Fluctuations, Wage Stickiness and Markup Adjustments

Real Exchange Rate Fluctuations, Wage Stickiness and Markup Adjustments Real Exchange Rate Fluctuatons, Wage Stckness and Markup Adjustments Yothn Jnjarak and Kanda Nakno Nanyang Technologcal Unversty and Purdue Unversty January 2009 Abstract Motvated by emprcal evdence on

More information

Wenjin Kang and Wee Yong Yeo. Department of Finance and Accounting National University of Singapore. This version: June 2007.

Wenjin Kang and Wee Yong Yeo. Department of Finance and Accounting National University of Singapore. This version: June 2007. LIQUIDITY BEYOND THE BEST QUOTE: A STUDY OF THE NYSE LIMIT ORDER BOOK Wenjn Kang and Wee Yong Yeo Department of Fnance and Accountng Natonal Unversty of Sngapore Ths verson: June 2007 Abstract We conduct

More information

02_EBA2eSolutionsChapter2.pdf 02_EBA2e Case Soln Chapter2.pdf

02_EBA2eSolutionsChapter2.pdf 02_EBA2e Case Soln Chapter2.pdf 0_EBAeSolutonsChapter.pdf 0_EBAe Case Soln Chapter.pdf Chapter Solutons: 1. a. Quanttatve b. Categorcal c. Categorcal d. Quanttatve e. Categorcal. a. The top 10 countres accordng to GDP are lsted below.

More information

Prospect Theory and Asset Prices

Prospect Theory and Asset Prices Fnance 400 A. Penat - G. Pennacch Prospect Theory and Asset Prces These notes consder the asset prcng mplcatons of nvestor behavor that ncorporates Prospect Theory. It summarzes an artcle by N. Barbers,

More information

Financial Crisis and Foreign Exchange Exposure of Korean Exporting Firms

Financial Crisis and Foreign Exchange Exposure of Korean Exporting Firms Fnancal Crss and Foregn Exchange Exposure of Korean Exportng Frms Jae-Young Cho a, Ronald A. Ratt b*, Sung-Wook Yoon c a Mnstry of Plannng and Budget, 520-3, Banpo-dong, Seocho-gu, Seoul 137-756, Korea

More information

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique.

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique. 1.7.4 Mode Mode s the value whch occurs most frequency. The mode may not exst, and even f t does, t may not be unque. For ungrouped data, we smply count the largest frequency of the gven value. If all

More information

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics Lmted Dependent Varable Models: Tobt an Plla N 1 CDS Mphl Econometrcs Introducton Lmted Dependent Varable Models: Truncaton and Censorng Maddala, G. 1983. Lmted Dependent and Qualtatve Varables n Econometrcs.

More information

A Comparison of Statistical Methods in Interrupted Time Series Analysis to Estimate an Intervention Effect

A Comparison of Statistical Methods in Interrupted Time Series Analysis to Estimate an Intervention Effect Transport and Road Safety (TARS) Research Joanna Wang A Comparson of Statstcal Methods n Interrupted Tme Seres Analyss to Estmate an Interventon Effect Research Fellow at Transport & Road Safety (TARS)

More information

Maturity Effect on Risk Measure in a Ratings-Based Default-Mode Model

Maturity Effect on Risk Measure in a Ratings-Based Default-Mode Model TU Braunschweg - Insttut für Wrtschaftswssenschaften Lehrstuhl Fnanzwrtschaft Maturty Effect on Rsk Measure n a Ratngs-Based Default-Mode Model Marc Gürtler and Drk Hethecker Fnancal Modellng Workshop

More information

FM303. CHAPTERS COVERED : CHAPTERS 5, 8 and 9. LEARNER GUIDE : UNITS 1, 2 and 3.1 to 3.3. DUE DATE : 3:00 p.m. 19 MARCH 2013

FM303. CHAPTERS COVERED : CHAPTERS 5, 8 and 9. LEARNER GUIDE : UNITS 1, 2 and 3.1 to 3.3. DUE DATE : 3:00 p.m. 19 MARCH 2013 Page 1 of 11 ASSIGNMENT 1 ST SEMESTER : FINANCIAL MANAGEMENT 3 () CHAPTERS COVERED : CHAPTERS 5, 8 and 9 LEARNER GUIDE : UNITS 1, 2 and 3.1 to 3.3 DUE DATE : 3:00 p.m. 19 MARCH 2013 TOTAL MARKS : 100 INSTRUCTIONS

More information

Finance 402: Problem Set 1 Solutions

Finance 402: Problem Set 1 Solutions Fnance 402: Problem Set 1 Solutons Note: Where approprate, the fnal answer for each problem s gven n bold talcs for those not nterested n the dscusson of the soluton. 1. The annual coupon rate s 6%. A

More information

2) In the medium-run/long-run, a decrease in the budget deficit will produce:

2) In the medium-run/long-run, a decrease in the budget deficit will produce: 4.02 Quz 2 Solutons Fall 2004 Multple-Choce Questons ) Consder the wage-settng and prce-settng equatons we studed n class. Suppose the markup, µ, equals 0.25, and F(u,z) = -u. What s the natural rate of

More information

10-810: Advanced Algorithms and Models for Computational Biology. Normalization

10-810: Advanced Algorithms and Models for Computational Biology. Normalization 0-80: Advanced Algorthms and Models for Computatonal Bology Normalzaton Gene Expresson Analyss Model Computatonal nformaton fuson Bologcal regulatory networks Pattern Recognton Data Analyss clusterng,

More information

Measurement and Management of Exchange Rate Exposure: New Approach and Evidence

Measurement and Management of Exchange Rate Exposure: New Approach and Evidence Measurement and Management of Exchange Rate Exposure: New Approach and Evdence Taek Ho Kwon a, Sung C. Bae b,*, Rae Soo Park c January 2013 * Correspondng author; Tel) 419-372-8714; E-mal) bae@bgsu.edu

More information

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1 Survey of Math: Chapter 22: Consumer Fnance Borrowng Page 1 APR and EAR Borrowng s savng looked at from a dfferent perspectve. The dea of smple nterest and compound nterest stll apply. A new term s the

More information

Does a Threshold Inflation Rate Exist? Quantile Inferences for Inflation and Its Variability

Does a Threshold Inflation Rate Exist? Quantile Inferences for Inflation and Its Variability Does a Threshold Inflaton Rate Exst? Inferences for Inflaton and Its Varablty WenShwo Fang Department of Economcs Feng Cha Unversty Tachung, TAIWAN Stephen M. Mller* Department of Economcs Unversty of

More information

Option Repricing and Incentive Realignment

Option Repricing and Incentive Realignment Opton Reprcng and Incentve Realgnment Jeffrey L. Coles Department of Fnance W. P. Carey School of Busness Arzona State Unversty Jeffrey.Coles@asu.edu Tel: (480) 965-4475 Naveen D. Danel Department of Fnance

More information

Spatial Variations in Covariates on Marriage and Marital Fertility: Geographically Weighted Regression Analyses in Japan

Spatial Variations in Covariates on Marriage and Marital Fertility: Geographically Weighted Regression Analyses in Japan Spatal Varatons n Covarates on Marrage and Martal Fertlty: Geographcally Weghted Regresson Analyses n Japan Kenj Kamata (Natonal Insttute of Populaton and Socal Securty Research) Abstract (134) To understand

More information

Call & Put Butterfly Spreads Test of SET50 Index Options Market Efficiency and SET50 Index Options Contract Adjustment

Call & Put Butterfly Spreads Test of SET50 Index Options Market Efficiency and SET50 Index Options Contract Adjustment Call & Put Butterfly preads est of E50 Index Optons Market Effcency and E50 Index Optons Contract Adjustment Woradee Jongadsayakul Abstract hs paper tests the effcency of E50 Index Optons market and nvestgates

More information

Raising Food Prices and Welfare Change: A Simple Calibration. Xiaohua Yu

Raising Food Prices and Welfare Change: A Simple Calibration. Xiaohua Yu Rasng Food Prces and Welfare Change: A Smple Calbraton Xaohua Yu Professor of Agrcultural Economcs Courant Research Centre Poverty, Equty and Growth Unversty of Göttngen CRC-PEG, Wlhelm-weber-Str. 2 3773

More information

Retail Mortgage Backed Securities, Commercial Asset Backed Securities and Corporate Bonds: a Credit Spread Comparison +

Retail Mortgage Backed Securities, Commercial Asset Backed Securities and Corporate Bonds: a Credit Spread Comparison + Retal Mortgage Backed Securtes, Commercal Asset Backed Securtes and Corporate Bonds: a Credt Spread Comparson + LORIANA PELIZZON * Unversty of Padua ENRICO RETTORE Unversty of Padua EMANUELA SOTTANA Fnanzara

More information

Pivot Points for CQG - Overview

Pivot Points for CQG - Overview Pvot Ponts for CQG - Overvew By Bran Bell Introducton Pvot ponts are a well-known technque used by floor traders to calculate ntraday support and resstance levels. Ths technque has been around for decades,

More information

Family control and dilution in mergers

Family control and dilution in mergers Famly control and dluton n mergers * Nlanjan Basu ** Lora Dmtrova and *** Imants Paegls Current verson: Aprl, 007 JEL classfcaton: G3, G34 Keywords: Famly frms, mergers and acqustons * Assstant Professor

More information

A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME

A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME Vesna Radonć Đogatovć, Valentna Radočć Unversty of Belgrade Faculty of Transport and Traffc Engneerng Belgrade, Serba

More information

Lecture 10: Valuation Models (with an Introduction to Capital Budgeting).

Lecture 10: Valuation Models (with an Introduction to Capital Budgeting). Foundatons of Fnance Lecture 10: Valuaton Models (wth an Introducton to Captal Budgetng). I. Readng. II. Introducton. III. Dscounted Cash Flow Models. IV. Relatve Valuaton Approaches. V. Contngent Clam

More information

Incorrect Beliefs. Overconfidence. Types of Overconfidence. Outline. Overprecision 4/15/2017. Behavioral Economics Mark Dean Spring 2017

Incorrect Beliefs. Overconfidence. Types of Overconfidence. Outline. Overprecision 4/15/2017. Behavioral Economics Mark Dean Spring 2017 Incorrect Belefs Overconfdence Behavoral Economcs Mark Dean Sprng 2017 In objectve EU we assumed that everyone agreed on what the probabltes of dfferent events were In subjectve expected utlty theory we

More information

University of Toronto November 9, 2006 ECO 209Y MACROECONOMIC THEORY. Term Test #1 L0101 L0201 L0401 L5101 MW MW 1-2 MW 2-3 W 6-8

University of Toronto November 9, 2006 ECO 209Y MACROECONOMIC THEORY. Term Test #1 L0101 L0201 L0401 L5101 MW MW 1-2 MW 2-3 W 6-8 Department of Economcs Prof. Gustavo Indart Unversty of Toronto November 9, 2006 SOLUTION ECO 209Y MACROECONOMIC THEORY Term Test #1 C LAST NAME FIRST NAME STUDENT NUMBER Crcle your secton of the course:

More information

University of Toronto November 9, 2006 ECO 209Y MACROECONOMIC THEORY. Term Test #1 L0101 L0201 L0401 L5101 MW MW 1-2 MW 2-3 W 6-8

University of Toronto November 9, 2006 ECO 209Y MACROECONOMIC THEORY. Term Test #1 L0101 L0201 L0401 L5101 MW MW 1-2 MW 2-3 W 6-8 Department of Economcs Prof. Gustavo Indart Unversty of Toronto November 9, 2006 SOLUTION ECO 209Y MACROECONOMIC THEORY Term Test #1 A LAST NAME FIRST NAME STUDENT NUMBER Crcle your secton of the course:

More information

Members not eligible for this option

Members not eligible for this option DC - Lump sum optons R6.1 Uncrystallsed funds penson lump sum An uncrystallsed funds penson lump sum, known as a UFPLS (also called a FLUMP), s a way of takng your penson pot wthout takng money from a

More information

Labor Market Transitions in Peru

Labor Market Transitions in Peru Labor Market Transtons n Peru Javer Herrera* Davd Rosas Shady** *IRD and INEI, E-mal: jherrera@ne.gob.pe ** IADB, E-mal: davdro@adb.org The Issue U s one of the major ssues n Peru However: - The U rate

More information

Earnings Management and Stock Exposure to Exchange Rate Risk

Earnings Management and Stock Exposure to Exchange Rate Risk Earnngs Management and Stock Exposure to Exchange Rate Rsk Feng-Y Chang a, Chn-Wen Hsn b, and Shn-Rong Shah-Hou c JEL classfcaton: F31, G30 Keywords: Exchange rate exposure, Earnngs Management, Theory

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE VI LECTURE - 4 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shalabh Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur An example to motvate

More information

Equilibrium in Prediction Markets with Buyers and Sellers

Equilibrium in Prediction Markets with Buyers and Sellers Equlbrum n Predcton Markets wth Buyers and Sellers Shpra Agrawal Nmrod Megddo Benamn Armbruster Abstract Predcton markets wth buyers and sellers of contracts on multple outcomes are shown to have unque

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 0-80 /02-70 Computatonal Genomcs Normalzaton Gene Expresson Analyss Model Computatonal nformaton fuson Bologcal regulatory networks Pattern Recognton Data Analyss clusterng, classfcaton normalzaton, mss.

More information

econstor Make Your Publications Visible.

econstor Make Your Publications Visible. econstor Make Your Publcatons Vsble. A Servce of Wrtschaft Centre zbwlebnz-informatonszentrum Economcs Bond, Steve; Hawkns, Mke; Klemm, Alexander Workng Paper Stamp duty on shares and ts effect on share

More information

UNIVERSITY OF VICTORIA Midterm June 6, 2018 Solutions

UNIVERSITY OF VICTORIA Midterm June 6, 2018 Solutions UIVERSITY OF VICTORIA Mdterm June 6, 08 Solutons Econ 45 Summer A0 08 age AME: STUDET UMBER: V00 Course ame & o. Descrptve Statstcs and robablty Economcs 45 Secton(s) A0 CR: 3067 Instructor: Betty Johnson

More information

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers II. Random Varables Random varables operate n much the same way as the outcomes or events n some arbtrary sample space the dstncton s that random varables are smply outcomes that are represented numercally.

More information

Morningstar After-Tax Return Methodology

Morningstar After-Tax Return Methodology Mornngstar After-Tax Return Methodology Mornngstar Research Report 24 October 2003 2003 Mornngstar, Inc. All rghts reserved. The nformaton n ths document s the property of Mornngstar, Inc. Reproducton

More information

Economics 330 Money and Banking Problem Set No. 3 Due Tuesday April 3, 2018 at the beginning of class

Economics 330 Money and Banking Problem Set No. 3 Due Tuesday April 3, 2018 at the beginning of class Economcs 0 Money and Bankng Problem Set No. Due Tuesday Aprl, 08 at the begnnng of class Fall 08 Dr. Ner I. A. The followng table shows the prce of $000 face value -year, -year, -year, 9-year and 0- year

More information

Co-location and the Comovement of Order Flow: Evidence from Firms that Switch Exchanges

Co-location and the Comovement of Order Flow: Evidence from Firms that Switch Exchanges Co-locaton and the Comovement of Order Flow: Evdence from Frms that Swtch Exchanges Adtya Kaul Unversty of Alberta School of Busness Edmonton, AB, Canada T6G2R6 Tel. +1-780-492-5027 emal: akaul@ualberta.ca

More information

Private Benefits: Ownership vs. Control

Private Benefits: Ownership vs. Control Prvate Benefts: Ownershp vs. Control Bll Hu 1 Unversty of Memphs Joon Ho Hwang *2 Korea Unversty Abstract We emprcally decompose prvate benefts nto two components: benefts accrung from ownershp and benefts

More information

Members not eligible for this option

Members not eligible for this option DC - Lump sum optons R6.2 Uncrystallsed funds penson lump sum An uncrystallsed funds penson lump sum, known as a UFPLS (also called a FLUMP), s a way of takng your penson pot wthout takng money from a

More information

Midterm Exam. Use the end of month price data for the S&P 500 index in the table below to answer the following questions.

Midterm Exam. Use the end of month price data for the S&P 500 index in the table below to answer the following questions. Unversty of Washngton Summer 2001 Department of Economcs Erc Zvot Economcs 483 Mdterm Exam Ths s a closed book and closed note exam. However, you are allowed one page of handwrtten notes. Answer all questons

More information

Consumption Based Asset Pricing

Consumption Based Asset Pricing Consumpton Based Asset Prcng Mchael Bar Aprl 25, 208 Contents Introducton 2 Model 2. Prcng rsk-free asset............................... 3 2.2 Prcng rsky assets................................ 4 2.3 Bubbles......................................

More information

Capability Analysis. Chapter 255. Introduction. Capability Analysis

Capability Analysis. Chapter 255. Introduction. Capability Analysis Chapter 55 Introducton Ths procedure summarzes the performance of a process based on user-specfed specfcaton lmts. The observed performance as well as the performance relatve to the Normal dstrbuton are

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part B

Chapter 3 Descriptive Statistics: Numerical Measures Part B Sldes Prepared by JOHN S. LOUCKS St. Edward s Unversty Slde 1 Chapter 3 Descrptve Statstcs: Numercal Measures Part B Measures of Dstrbuton Shape, Relatve Locaton, and Detectng Outlers Eploratory Data Analyss

More information

Principles of Finance

Principles of Finance Prncples of Fnance Grzegorz Trojanowsk Lecture 6: Captal Asset Prcng Model Prncples of Fnance - Lecture 6 1 Lecture 6 materal Requred readng: Elton et al., Chapters 13, 14, and 15 Supplementary readng:

More information

Limits of arbitrage and corporate financial policy

Limits of arbitrage and corporate financial policy Lmts of arbtrage and corporate fnancal polcy Massmo Massa INSEAD * Urs Peyer INSEAD * Zhenxu Tong INSEAD * Frst draft: March 2004 Ths draft: September 2004 Abstract We focus on an exogenous event that

More information

UNDERPRICING AND EX ANTE UNCERTAINTY IN IPOS: EVIDENCE FROM THE TUNISIAN STOCK MARKET

UNDERPRICING AND EX ANTE UNCERTAINTY IN IPOS: EVIDENCE FROM THE TUNISIAN STOCK MARKET Busness Excellence and Management Jerb, A. UNDERPRICING AND EX ANTE UNCERTAINTY IN IPOS: EVIDENCE FROM THE TUNISIAN STOCK MARKET Ahmed JERIBI Unversty of Sfax, Sfax, Tunsa ahmedjerb07@yahoo.fr Abstract

More information

Scribe: Chris Berlind Date: Feb 1, 2010

Scribe: Chris Berlind Date: Feb 1, 2010 CS/CNS/EE 253: Advanced Topcs n Machne Learnng Topc: Dealng wth Partal Feedback #2 Lecturer: Danel Golovn Scrbe: Chrs Berlnd Date: Feb 1, 2010 8.1 Revew In the prevous lecture we began lookng at algorthms

More information

Managing EPS Through Accelerated Share Repurchases: Compensation Versus Capital Market Incentives

Managing EPS Through Accelerated Share Repurchases: Compensation Versus Capital Market Incentives Managng EPS Through Accelerated Share Repurchases: Compensaton Versus Captal Market Incentves Carol Marquardt Assocate Professor Baruch College CUNY Chrstne Tan Assstant Professor Baruch College CUNY and

More information