Week #15 - Word Problems & Differential Equations Section 8.6

Size: px
Start display at page:

Download "Week #15 - Word Problems & Differential Equations Section 8.6"

Transcription

1 Week #15 - Word Problems & Differential Equations Section 8.6 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 5 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc. SUGGESTED PROBLEMS 1. Find the future value of an income stream of $1 per year, deposited into an account paying 8% interest, compounded continuously, over a 1-year period. We are adding money at a constant rate of $1 per year. The amount deposited in the small time interval t at time t will be $1 t. This money will grow at 8% interest for the remaing 1 t years, so its future value will be ($1 t) e.8 (1 t) Adding up all the deposits from t = to t = 1, and letting t dt, we get Future value = 1 1e.8(1 t) dt.8(1 t) 1 = 1e 1.8 = 1 ( e + e.8(1)).8 = $15, This is noticeably more than the actuall $1, deposited, and seems reasonable for the amount of interest that should have been earned. 3. Find the present and future values of an income stream of $ a year, for a period of 5 years, if the continuous interest rate is 8%. Similarly to #3, the future value will be given by Future value = 5 e.8(1 t) dt.8(5 t) 1 = e 5.8 = ( e + e.8(5)).8 = $1, 95.6 Note that this value is less than for the 1 year case in #1, even though the total deposit is still $1,. This is because there is only five years for the interest to accumulate. 1

2 The present value can be computed more easily using the simple relationship on page 411, that Future Value = e rm Present value where r is the interest rate and M is the number of years. Future Value Present value = e rm = $1,95.6 e.8 5 $8,4. 9. A business associate who owes you $3 offers to pay you $8 now, or else pay you three yearly installments of $1 each, with the first installment paid now. If you use only financial reasons to make your decision, which option should you choose? Justify your answer, assuming a 6% market interest rate, compounded continuously. You should choose whichever payment schedule maximizes it either present or current value. Since one of the options is a lump-sum payment of $,8 right now (and so it s present value is $,8), it would be easier to compare present values. When we consider the three payments of $1,, we need to reduce each of their value from the future to their present value. One payment is immediate, so has a present value of $1,. The next payment is a year from now, so needs to be discounted by e.6 1. The last payment will be given in two years, so needs to be discounted by e.6. The net present value of all three payments then is $1, + $1, e $1, e.6 $88.68 From this analysis, you are marginally better off taking the payment in $1, installments, although the difference is relatively slight $8 on the $3, amount. You would still be taking a loss relative to what you are owed. QUIZ PREPARATION PROBLEMS 7. (a) A bank account earns 1% interest compounded continuously. At what (constant, continuous) rate must a parent deposit money into such an account in order to save $1, in 1 years for a child s college expenses? (b) If the parent decides instead to deposit a lump sum now in order to attain the goal of $1, in 1 years, how much must be deposited now? (a) The future value of a continuous income stream is given by the fomrula on page 411 of the text. In this case, the income stream is constant, so P(t) = R, and we are looking for R such that the future value equals $1,.

3 Future value = 1 1, = Re 1, = R.1 Re.1(1 t) dt.1(1 t) [ e + e.1(1)] R = 1, e 1 $5, per year e The parents would need to deposit approximately $5, per year to achieve their goal. (b) A single lump sum of P, over 1 years, would grow to P e.1(1). To find an initial deposit that would grow to 1, in ten years, we solve P e 1 = 1, P = 1, e 1 $36, They would need to deposit $36, today to have $1, in ten years. 13. An oil company discovered an oil reserve of 1 million barrels. For time t >, in years, the company s extraction plan is a linear declining function of time as follows: q(t) = a bt where q(t) is the rate of extraction of oil in millions of barrels per year at time t and b =.1 and a = 1. (a) How long does it take to exhaust the entire reserve? (b) The oil price is a constant $ per barrel, the extraction cost per barrel is a constant $1, and the market interest rate is 1% per year, compounded continuously. What is the present value of the company s profit? (a) If the extraction rate is q(t) = 1.1t millions of barrels per year, the total amount extracted in N years will be N 1.1t dt We want that amount to equal 1 ( millions of barrels is already in the units), 3

4 and solve for N: 1 = N 1.1t dt 1 = 1t.1t 1 = 1N.1N Set up as quadratic: =.5N 1N + 1 Use quadratic formula: N = 1 ± 1 4(.5)(1) (.5) N = 1.6, years Only the 1.6 year estimate makes sense, as the rate would be negative at 189 years. If the estimate of 1 million barrels is correct, it should take 1.6 years to exhaust the well. (b) If oil sale price is $ per barrel, and it costs $1 to extract, then every barrel of oil will produce a profit of $ - $1 = $1. This means that we can translate the rate of oil into the rate of money flowing in to an account, with P(t) = rate of deposit = $1 q(t) = $1(1.1)t = $(1 t) millions of dollars per year This income stream will be flowing as long as the well is pumping, which we found would be for 1.6 years in part (a). Using the present value formula on page 41 of the text, we can compute the present value of all the oil that will be produced over that time. Present value = = Split into two integrals: = P(t)e rt dt (1 t)e rt dt 1e rt dt 1.6 te rt dt The first integral is 1e rt /r. The second integral requires integration by parts: selecting: u = t dv = e rt dt so du = dt v = e rt /r Using the integration by parts formula, 4

5 te rt dt = te rt /r + 1 r e rt dt = te rt /r 1 r ( e rt so the Present value = 1 e rt t r r e rt 1 ) 1.6 r e rt ( 1 = e rt r + t 1 ) r ( ) 1 with r = 1% =.1, = e ( 1 e.1 1 ).1 $64.9 million The present value is roughly $65 million dollars. This seems reasonable, since the total value of the oil is $1, million dollars ($1 for each of the 1 million barrels). However, the oil will only be pumped out later, so the present value is slightly discounted. 5

Week #7 - Maxima and Minima, Concavity, Applications Section 4.4

Week #7 - Maxima and Minima, Concavity, Applications Section 4.4 Week #7 - Maxima and Minima, Concavity, Applications Section 4.4 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates 16 2.1 Definitions.................................... 16 2.1.1 Rate of Return..............................

More information

Financial Applications Involving Exponential Functions

Financial Applications Involving Exponential Functions Section 6.5: Financial Applications Involving Exponential Functions When you invest money, your money earns interest, which means that after a period of time you will have more money than you started with.

More information

Week #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7

Week #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Week #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This

More information

Mathematical Modeling, Lecture 1

Mathematical Modeling, Lecture 1 Mathematical Modeling, Lecture 1 Gudrun Gudmundsdottir January 22 2014 Some practical issues A lecture each wednesday 10.15 12.00, with some exceptions Text book: Meerschaert We go through the text and

More information

CHAPTER 15 INVESTMENT, TIME, AND CAPITAL MARKETS

CHAPTER 15 INVESTMENT, TIME, AND CAPITAL MARKETS CHAPTER 15 INVESTMENT, TIME, AND CAPITAL MARKETS REVIEW QUESTIONS 1. A firm uses cloth and labor to produce shirts in a factory that it bought for $10 million. Which of its factor inputs are measured as

More information

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee

Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Time value of money-concepts and Calculations Prof. Bikash Mohanty Department of Chemical Engineering Indian Institute of Technology, Roorkee Lecture 08 Present Value Welcome to the lecture series on Time

More information

MATH 4512 Fundamentals of Mathematical Finance

MATH 4512 Fundamentals of Mathematical Finance MATH 4512 Fundamentals of Mathematical Finance Solution to Homework One Course instructor: Prof. Y.K. Kwok 1. Recall that D = 1 B n i=1 c i i (1 + y) i m (cash flow c i occurs at time i m years), where

More information

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest

3: Balance Equations 3.1 Accounts with Constant Interest Rates. Terms. Example. Simple Interest 3: Balance Equations 3.1 Accounts with Constant Interest Rates Example Two different accounts 1% per year: earn 1% each year on dollars at beginning of year 1% per month: earn 1% each month on dollars

More information

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple

1. MAPLE. Objective: After reading this chapter, you will solve mathematical problems using Maple 1. MAPLE Objective: After reading this chapter, you will solve mathematical problems using Maple 1.1 Maple Maple is an extremely powerful program, which can be used to work out many different types of

More information

Introduction to Financial Mathematics

Introduction to Financial Mathematics Introduction to Financial Mathematics MTH 210 Fall 2016 Jie Zhong November 30, 2016 Mathematics Department, UR Table of Contents Arbitrage Interest Rates, Discounting, and Basic Assets Forward Contracts

More information

Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance

Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance Financial Management Masters of Business Administration Study Notes & Practice Questions Chapter 2: Concepts of Finance 1 Introduction Chapter 2: Concepts of Finance 2017 Rationally, you will certainly

More information

3: Balance Equations

3: Balance Equations 3.1 Balance Equations Accounts with Constant Interest Rates 15 3: Balance Equations Investments typically consist of giving up something today in the hope of greater benefits in the future, resulting in

More information

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis

MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis 16 MTH6154 Financial Mathematics I Interest Rates and Present Value Analysis Contents 2 Interest Rates and Present Value Analysis 16 2.1 Definitions.................................... 16 2.1.1 Rate of

More information

Mathematics for Economists

Mathematics for Economists Department of Economics Mathematics for Economists Chapter 4 Mathematics of Finance Econ 506 Dr. Mohammad Zainal 4 Mathematics of Finance Compound Interest Annuities Amortization and Sinking Funds Arithmetic

More information

Dollars and Sense II: Our Interest in Interest, Managing Savings, and Debt

Dollars and Sense II: Our Interest in Interest, Managing Savings, and Debt Dollars and Sense II: Our Interest in Interest, Managing Savings, and Debt Lesson 1 Can Compound Interest Work for Me? Instructions for Teachers Overview of Contents This lesson contains three hands-on

More information

CHAPTER 4. The Time Value of Money. Chapter Synopsis

CHAPTER 4. The Time Value of Money. Chapter Synopsis CHAPTER 4 The Time Value of Money Chapter Synopsis Many financial problems require the valuation of cash flows occurring at different times. However, money received in the future is worth less than money

More information

Math116Chap10MathOfMoneyPart2Done.notebook March 01, 2012

Math116Chap10MathOfMoneyPart2Done.notebook March 01, 2012 Chapter 10: The Mathematics of Money PART 2 Percent Increases and Decreases If a shirt is marked down 20% and it now costs $32, how much was it originally? Simple Interest If you invest a principle of

More information

The Theory of Interest

The Theory of Interest Chapter 1 The Theory of Interest One of the first types of investments that people learn about is some variation on the savings account. In exchange for the temporary use of an investor s money, a bank

More information

Cash Flow and the Time Value of Money

Cash Flow and the Time Value of Money Harvard Business School 9-177-012 Rev. October 1, 1976 Cash Flow and the Time Value of Money A promising new product is nationally introduced based on its future sales and subsequent profits. A piece of

More information

Annuities and Income Streams

Annuities and Income Streams Annuities and Income Streams MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Summer 212 Objectives After completing this lesson we will be able to: determine the value of

More information

4: Single Cash Flows and Equivalence

4: Single Cash Flows and Equivalence 4.1 Single Cash Flows and Equivalence Basic Concepts 28 4: Single Cash Flows and Equivalence This chapter explains basic concepts of project economics by examining single cash flows. This means that each

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 14 Lecture 14 November 15, 2017 Derivation of the

More information

25 Increasing and Decreasing Functions

25 Increasing and Decreasing Functions - 25 Increasing and Decreasing Functions It is useful in mathematics to define whether a function is increasing or decreasing. In this section we will use the differential of a function to determine this

More information

Survey of Math Chapter 21: Savings Models Handout Page 1

Survey of Math Chapter 21: Savings Models Handout Page 1 Chapter 21: Savings Models Handout Page 1 Growth of Savings: Simple Interest Simple interest pays interest only on the principal, not on any interest which has accumulated. Simple interest is rarely used

More information

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the

Day 3 Simple vs Compound Interest.notebook April 07, Simple Interest is money paid or earned on the. The Principal is the LT: I can calculate simple and compound interest. p.11 What is Simple Interest? What is Principal? Simple Interest is money paid or earned on the. The Principal is the What is the Simple Interest Formula?

More information

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale)

Midterm 3. Math Summer Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Math 184 - Summer 2011 Midterm 3 Last Name: First Name: Student Number: Section (circle one): 921 (Warren Code) or 922 (Marc Carnovale) Read all of the following information before starting the exam: Calculators

More information

Solutions to Practice Questions (Diversification)

Solutions to Practice Questions (Diversification) Simon School of Business University of Rochester FIN 402 Capital Budgeting & Corporate Objectives Prof. Ron Kaniel Solutions to Practice Questions (Diversification) 1. These practice questions are a suplement

More information

TASK: Interest Comparison

TASK: Interest Comparison This task was developed by secondary mathematics and CTE teachers across Washington State from urban and rural areas. These teachers have incorporated financial literacy in their classroom and have received

More information

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include: 4.1 Exponential Functions Hartfield MATH 2040 Unit 4 Page 1 Recall from algebra the formulas for Compound Interest: Formula 1 For Discretely Compounded Interest A t P 1 r n nt Formula 2 Continuously Compounded

More information

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and

1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and CHAPTER 13 Solutions Exercise 1 1. In this exercise, we can easily employ the equations (13.66) (13.70), (13.79) (13.80) and (13.82) (13.86). Also, remember that BDT model will yield a recombining binomial

More information

Engineering Economy Chapter 4 More Interest Formulas

Engineering Economy Chapter 4 More Interest Formulas Engineering Economy Chapter 4 More Interest Formulas 1. Uniform Series Factors Used to Move Money Find F, Given A (i.e., F/A) Find A, Given F (i.e., A/F) Find P, Given A (i.e., P/A) Find A, Given P (i.e.,

More information

Question 3: How do you find the relative extrema of a function?

Question 3: How do you find the relative extrema of a function? Question 3: How do you find the relative extrema of a function? The strategy for tracking the sign of the derivative is useful for more than determining where a function is increasing or decreasing. It

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5

0 Review: Lines, Fractions, Exponents Lines Fractions Rules of exponents... 5 Contents 0 Review: Lines, Fractions, Exponents 3 0.1 Lines................................... 3 0.2 Fractions................................ 4 0.3 Rules of exponents........................... 5 1 Functions

More information

Homework 3: Asset Pricing

Homework 3: Asset Pricing Homework 3: Asset Pricing Mohammad Hossein Rahmati November 1, 2018 1. Consider an economy with a single representative consumer who maximize E β t u(c t ) 0 < β < 1, u(c t ) = ln(c t + α) t= The sole

More information

The three formulas we use most commonly involving compounding interest n times a year are

The three formulas we use most commonly involving compounding interest n times a year are Section 6.6 and 6.7 with finance review questions are included in this document for your convenience for studying for quizzes and exams for Finance Calculations for Math 11. Section 6.6 focuses on identifying

More information

Appendix A Financial Calculations

Appendix A Financial Calculations Derivatives Demystified: A Step-by-Step Guide to Forwards, Futures, Swaps and Options, Second Edition By Andrew M. Chisholm 010 John Wiley & Sons, Ltd. Appendix A Financial Calculations TIME VALUE OF MONEY

More information

Before How can lines on a graph show the effect of interest rates on savings accounts?

Before How can lines on a graph show the effect of interest rates on savings accounts? Compound Interest LAUNCH (7 MIN) Before How can lines on a graph show the effect of interest rates on savings accounts? During How can you tell what the graph of simple interest looks like? After What

More information

A central precept of financial analysis is money s time value. This essentially means that every dollar (or

A central precept of financial analysis is money s time value. This essentially means that every dollar (or INTRODUCTION TO THE TIME VALUE OF MONEY 1. INTRODUCTION A central precept of financial analysis is money s time value. This essentially means that every dollar (or a unit of any other currency) received

More information

Math 1090 Final Exam Fall 2012

Math 1090 Final Exam Fall 2012 Math 1090 Final Exam Fall 2012 Name Instructor: Student ID Number: Instructions: Show all work, as partial credit will be given where appropriate. If no work is shown, there may be no credit given. All

More information

Chapter 6. Learning Objectives. Principals Applies in this Chapter. Time Value of Money

Chapter 6. Learning Objectives. Principals Applies in this Chapter. Time Value of Money Chapter 6 Time Value of Money 1 Learning Objectives 1. Distinguish between an ordinary annuity and an annuity due, and calculate the present and future values of each. 2. Calculate the present value of

More information

Risk-neutral Binomial Option Valuation

Risk-neutral Binomial Option Valuation Risk-neutral Binomial Option Valuation Main idea is that the option price now equals the expected value of the option price in the future, discounted back to the present at the risk free rate. Assumes

More information

7-4. Compound Interest. Vocabulary. Interest Compounded Annually. Lesson. Mental Math

7-4. Compound Interest. Vocabulary. Interest Compounded Annually. Lesson. Mental Math Lesson 7-4 Compound Interest BIG IDEA If money grows at a constant interest rate r in a single time period, then after n time periods the value of the original investment has been multiplied by (1 + r)

More information

Extraction capacity and the optimal order of extraction. By: Stephen P. Holland

Extraction capacity and the optimal order of extraction. By: Stephen P. Holland Extraction capacity and the optimal order of extraction By: Stephen P. Holland Holland, Stephen P. (2003) Extraction Capacity and the Optimal Order of Extraction, Journal of Environmental Economics and

More information

CHAPTER 3. Compound Interest

CHAPTER 3. Compound Interest CHAPTER 3 Compound Interest Recall What can you say to the amount of interest earned in simple interest? Do you know? An interest can also earn an interest? Compound Interest Whenever a simple interest

More information

It is a measure to compare bonds (among other things).

It is a measure to compare bonds (among other things). It is a measure to compare bonds (among other things). It provides an estimate of the volatility or the sensitivity of the market value of a bond to changes in interest rates. There are two very closely

More information

8: Economic Criteria

8: Economic Criteria 8.1 Economic Criteria Capital Budgeting 1 8: Economic Criteria The preceding chapters show how to discount and compound a variety of different types of cash flows. This chapter explains the use of those

More information

Final Exam Review - Business Calculus - Spring x x

Final Exam Review - Business Calculus - Spring x x Final Exam Review - Business Calculus - Spring 2016 Name: 1. (a) Find limit lim x 1 x 1 x 1 (b) Find limit lim x 0 x + 2 4 x 1 2. Use the definition of derivative: dy dx = lim f(x + h) f(x) h 0 h Given

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

r 1. Discuss the meaning of compounding using the formula A= A0 1+

r 1. Discuss the meaning of compounding using the formula A= A0 1+ Money and the Exponential Function Goals: x 1. Write and graph exponential functions of the form f ( x) = a b (3.15) 2. Use exponential equations to solve problems. Solve by graphing, substitution. (3.17)

More information

JWPR Design-Sample April 16, :38 Char Count= 0 PART. One. Quantitative Analysis COPYRIGHTED MATERIAL

JWPR Design-Sample April 16, :38 Char Count= 0 PART. One. Quantitative Analysis COPYRIGHTED MATERIAL PART One Quantitative Analysis COPYRIGHTED MATERIAL 1 2 CHAPTER 1 Bond Fundamentals Risk management starts with the pricing of assets. The simplest assets to study are regular, fixed-coupon bonds. Because

More information

Stat 274 Theory of Interest. Chapter 1: The Growth of Money. Brian Hartman Brigham Young University

Stat 274 Theory of Interest. Chapter 1: The Growth of Money. Brian Hartman Brigham Young University Stat 274 Theory of Interest Chapter 1: The Growth of Money Brian Hartman Brigham Young University What is interest? An investment of K grows to S, then the difference (S K) is the interest. Why do we charge

More information

4.7 Compound Interest

4.7 Compound Interest 4.7 Compound Interest 4.7 Compound Interest Objective: Determine the future value of a lump sum of money. 1 Simple Interest Formula: InterestI = Prt Principal interest rate time in years 2 A credit union

More information

Questions 3-6 are each weighted twice as much as each of the other questions.

Questions 3-6 are each weighted twice as much as each of the other questions. Mathematics 107 Professor Alan H. Stein December 1, 005 SOLUTIONS Final Examination Questions 3-6 are each weighted twice as much as each of the other questions. 1. A savings account is opened with a deposit

More information

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS

SOCIETY OF ACTUARIES FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS SOCIETY OF ACTUARIES EXAM FM FINANCIAL MATHEMATICS EXAM FM SAMPLE QUESTIONS This set of sample questions includes those published on the interest theory topic for use with previous versions of this examination.

More information

Assignment 3 Solutions

Assignment 3 Solutions ssignment 3 Solutions Timothy Vis January 30, 2006 3-1-6 P 900, r 10%, t 9 months, I?. Given I P rt, we have I (900)(0.10)( 9 12 ) 67.50 3-1-8 I 40, P 400, t 4 years, r?. Given I P rt, we have 40 (400)r(4),

More information

Interest Compounded Annually. Table 3.27 Interest Computed Annually

Interest Compounded Annually. Table 3.27 Interest Computed Annually 33 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.6 Mathematics of Finance What you ll learn about Interest Compounded Annually Interest Compounded k Times per Year Interest Compounded Continuously

More information

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money.

These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Simple and compound interest NAME: These terms are the same whether you are the borrower or the lender, but I describe the words by thinking about borrowing the money. Principal: initial amount you borrow;

More information

P&L Attribution and Risk Management

P&L Attribution and Risk Management P&L Attribution and Risk Management Liuren Wu Options Markets (Hull chapter: 15, Greek letters) Liuren Wu ( c ) P& Attribution and Risk Management Options Markets 1 / 19 Outline 1 P&L attribution via the

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

Chapter 21: Savings Models

Chapter 21: Savings Models October 14, 2013 This time Arithmetic Growth Simple Interest Geometric Growth Compound Interest A limit to Compounding Simple Interest Simple Interest Simple Interest is interest that is paid on the original

More information

CONTENTS Put-call parity Dividends and carrying costs Problems

CONTENTS Put-call parity Dividends and carrying costs Problems Contents 1 Interest Rates 5 1.1 Rate of return........................... 5 1.2 Interest rates........................... 6 1.3 Interest rate conventions..................... 7 1.4 Continuous compounding.....................

More information

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding.

Key Terms: exponential function, exponential equation, compound interest, future value, present value, compound amount, continuous compounding. 4.2 Exponential Functions Exponents and Properties Exponential Functions Exponential Equations Compound Interest The Number e and Continuous Compounding Exponential Models Section 4.3 Logarithmic Functions

More information

SHORT METHOD for Difference between C. I & S. I for 3 years C. I

SHORT METHOD for Difference between C. I & S. I for 3 years C. I SIMPLE INTEREST S. I = PTR S. I = Simple interest P = principal T = time in years R = rate of interest A = P + S. I A = total amount COMPOUND INTEREST C. I = P (1 + R )T P C.I = Compound interest P = principal

More information

2.6.3 Interest Rate 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS

2.6.3 Interest Rate 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS 68 ESTOLA: PRINCIPLES OF QUANTITATIVE MICROECONOMICS where price inflation p t/pt is subtracted from the growth rate of the value flow of production This is a general method for estimating the growth rate

More information

Alg2A Factoring and Equations Review Packet

Alg2A Factoring and Equations Review Packet 1 Factoring using GCF: Take the greatest common factor (GCF) for the numerical coefficient. When choosing the GCF for the variables, if all the terms have a common variable, take the one with the lowest

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELECTRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 110 FINAL EXAM **Test** December 14, 2009 TEST VERSION A NAME STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number

More information

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1.

THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS. Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** 1. THE USE OF NUMERAIRES IN MULTI-DIMENSIONAL BLACK- SCHOLES PARTIAL DIFFERENTIAL EQUATIONS Hyong-chol O *, Yong-hwa Ro **, Ning Wan*** Abstract The change of numeraire gives very important computational

More information

Financial Management I

Financial Management I Financial Management I Workshop on Time Value of Money MBA 2016 2017 Slide 2 Finance & Valuation Capital Budgeting Decisions Long-term Investment decisions Investments in Net Working Capital Financing

More information

troduction to Algebra

troduction to Algebra Chapter Six Percent Percents, Decimals, and Fractions Understanding Percent The word percent comes from the Latin phrase per centum,, which means per 100. Percent means per one hundred. The % symbol is

More information

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships)

IE463 Chapter 2. Objective. Time Value of Money (Money- Time Relationships) IE463 Chapter 2 Time Value of Money (Money- Time Relationships) Objective Given a cash flow (or series of cash flows) occurring at some point in time, the objective is to find its equivalent value at another

More information

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK

MSC FINANCIAL ENGINEERING PRICING I, AUTUMN LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK MSC FINANCIAL ENGINEERING PRICING I, AUTUMN 2010-2011 LECTURE 6: EXTENSIONS OF BLACK AND SCHOLES RAYMOND BRUMMELHUIS DEPARTMENT EMS BIRKBECK In this section we look at some easy extensions of the Black

More information

a n a m = an m a nm = a nm

a n a m = an m a nm = a nm Exponential Functions The greatest shortcoming of the human race is our inability to understand the exponential function. - Albert A. Bartlett The function f(x) = 2 x, where the power is a variable x,

More information

Chapter. Chapter. Accounting and the Time Value of Money. Time Value of Money. Basic Time Value Concepts. Basic Time Value Concepts

Chapter. Chapter. Accounting and the Time Value of Money. Time Value of Money. Basic Time Value Concepts. Basic Time Value Concepts Accounting and the Time Value Money 6 6-1 Prepared by Coby Harmon, University California, Santa Barbara Basic Time Value Concepts Time Value Money In accounting (and finance), the term indicates that a

More information

Forwards and Futures. Chapter Basics of forwards and futures Forwards

Forwards and Futures. Chapter Basics of forwards and futures Forwards Chapter 7 Forwards and Futures Copyright c 2008 2011 Hyeong In Choi, All rights reserved. 7.1 Basics of forwards and futures The financial assets typically stocks we have been dealing with so far are the

More information

Pricing Dynamic Solvency Insurance and Investment Fund Protection

Pricing Dynamic Solvency Insurance and Investment Fund Protection Pricing Dynamic Solvency Insurance and Investment Fund Protection Hans U. Gerber and Gérard Pafumi Switzerland Abstract In the first part of the paper the surplus of a company is modelled by a Wiener process.

More information

CAPITAL BUDGETING AND THE INVESTMENT DECISION

CAPITAL BUDGETING AND THE INVESTMENT DECISION C H A P T E R 1 2 CAPITAL BUDGETING AND THE INVESTMENT DECISION I N T R O D U C T I O N This chapter begins by discussing some of the problems associated with capital asset decisions, such as the long

More information

FIN Final Exam Fixed Income Securities

FIN Final Exam Fixed Income Securities FIN8340 - Final Exam Fixed Income Securities Exam time is: 60 hours. Total points for this exam is: 600 points, corresponding to 60% of your nal grade. 0.0.1 Instructions Read carefully the questions.

More information

Mathematics (Project Maths Phase 2)

Mathematics (Project Maths Phase 2) L.17 NAME SCHOOL TEACHER Pre-Leaving Certificate Examination, 2013 Mathematics (Project Maths Phase 2) Paper 1 Higher Level Time: 2 hours, 30 minutes 300 marks For examiner Question 1 Centre stamp 2 3

More information

DSC1520 ASSIGNMENT 3 POSSIBLE SOLUTIONS

DSC1520 ASSIGNMENT 3 POSSIBLE SOLUTIONS DSC1520 ASSIGNMENT 3 POSSIBLE SOLUTIONS Question 1 Find the derivative of the function: ( ) Replace with, expand the brackets and simplify before differentiating Apply the Power Rule of differentiation.

More information

(1) Get a job now and don t go to graduate school (2) Get a graduate degree and then get a higher paying job. > V J or, stated another way, if V G

(1) Get a job now and don t go to graduate school (2) Get a graduate degree and then get a higher paying job. > V J or, stated another way, if V G An Example Working with the Time Value of Money GRAD SCHOOL? The problem with trying to solve time value of money (TVM) problems simply by memorizing formulas for zero-coupon discount securities and annuities

More information

Writing Exponential Equations Day 2

Writing Exponential Equations Day 2 Writing Exponential Equations Day 2 MGSE9 12.A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear, quadratic, simple rational,

More information

In a growing midwestern town, the number of eating establishments at the end of each of the last five years are as follows:

In a growing midwestern town, the number of eating establishments at the end of each of the last five years are as follows: Name: Date: In a growing midwestern town, the number of eating establishments at the end of each of the last five years are as follows: Year 1 = 273; Year 2 = 279; Year 3 = 302; Year 4 = 320; Year 5 =

More information

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL

STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL STOCHASTIC CALCULUS AND BLACK-SCHOLES MODEL YOUNGGEUN YOO Abstract. Ito s lemma is often used in Ito calculus to find the differentials of a stochastic process that depends on time. This paper will introduce

More information

Study Guide - Part 1

Study Guide - Part 1 Math 116 Spring 2015 Study Guide - Part 1 1. Find the slope of a line that goes through the points (1, 5) and ( 3, 13). The slope is (A) Less than -1 (B) Between -1 and 1 (C) Between 1 and 3 (D) More than

More information

Black-Scholes Option Pricing

Black-Scholes Option Pricing Black-Scholes Option Pricing The pricing kernel furnishes an alternate derivation of the Black-Scholes formula for the price of a call option. Arbitrage is again the foundation for the theory. 1 Risk-Free

More information

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University,

Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, Chapter 9, Mathematics of Finance from Applied Finite Mathematics by Rupinder Sekhon was developed by OpenStax College, licensed by Rice University, and is available on the Connexions website. It is used

More information

Capital Leases I: Present and Future Value

Capital Leases I: Present and Future Value Spreadsheet Models for Managers 9/1 Session 9 Capital Leases I: Present and Future Value Worksheet Functions Non-Uniform Payments Last revised: July 6, 2011 Review of last time: Financial Models 9/2 Three

More information

This homework assignment uses the material on pages ( A moving average ).

This homework assignment uses the material on pages ( A moving average ). Module 2: Time series concepts HW Homework assignment: equally weighted moving average This homework assignment uses the material on pages 14-15 ( A moving average ). 2 Let Y t = 1/5 ( t + t-1 + t-2 +

More information

1 Answers to the Sept 08 macro prelim - Long Questions

1 Answers to the Sept 08 macro prelim - Long Questions Answers to the Sept 08 macro prelim - Long Questions. Suppose that a representative consumer receives an endowment of a non-storable consumption good. The endowment evolves exogenously according to ln

More information

22.812J Nuclear Energy Economics and Policy Analysis S 04. Classnote: The Time Value of Money

22.812J Nuclear Energy Economics and Policy Analysis S 04. Classnote: The Time Value of Money 22.812J uclear Energy Economics and Policy Analysis S 04 Classnote: The Time Value of Money 1. Motivating Example To motivate the discussion, we consider a homeowner faced with a decision whether to install

More information

Algebra Review (New Version) Homework Problems

Algebra Review (New Version) Homework Problems MATH 119 Algebra Review (New Version) Homework Problems The following set is only to review the Algebra needed for this class. It should be familiar to you from previous class such as M110, M111 or others.

More information

Interest Rate Risk. Chapter 4. Risk Management and Financial Institutions, Chapter 4, Copyright John C. Hull

Interest Rate Risk. Chapter 4. Risk Management and Financial Institutions, Chapter 4, Copyright John C. Hull Interest Rate Risk Chapter 4 Risk Management and Financial Institutions, Chapter 4, Copyright John C. Hull 2006 4.1 Measuring Interest Rates The compounding frequency used for an interest rate is the unit

More information

Accounting Principles

Accounting Principles Accounting Principles Second Canadian Edition Weygandt Kieso Kimmel Trenholm Prepared by: Carole Bowman, Sheridan College CHAPTER 2 THE RECORDING PROCESS THE ACCOUNT An account is an individual accounting

More information

1 Maximizing profits when marginal costs are increasing

1 Maximizing profits when marginal costs are increasing BEE12 Basic Mathematical Economics Week 1, Lecture Tuesday 9.12.3 Profit maximization / Elasticity Dieter Balkenborg Department of Economics University of Exeter 1 Maximizing profits when marginal costs

More information

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina Notes: This is a closed book and closed notes exam. Time: 50 minutes M339W/389W Financial Mathematics for Actuarial Applications University of Texas at Austin Sample In-Term Exam I Instructor: Milica Čudina

More information

center for retirement research

center for retirement research SAVING FOR RETIREMENT: TAXES MATTER By James M. Poterba * Introduction To encourage individuals to save for retirement, federal tax policy provides various tax advantages for investments in self-directed

More information

Chapter 11 Online Appendix:

Chapter 11 Online Appendix: Chapter 11 Online Appendix: The Calculus of Cournot and Differentiated Bertrand Competition Equilibria In this appendix, we explore the Cournot and Bertrand market structures. The textbook describes the

More information

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION

CHAPTER 4 DISCOUNTED CASH FLOW VALUATION CHAPTER 4 DISCOUNTED CASH FLOW VALUATION Answers to Concept Questions 1. Assuming positive cash flows and interest rates, the future value increases and the present value decreases. 2. Assuming positive

More information