Answers to Exercise 8

Size: px
Start display at page:

Download "Answers to Exercise 8"

Transcription

1 Answers to Exercise 8 Logistic Population Models 1. Inspect your graph of N t against time. You should see the following: Population size increases slowly at first, then accelerates (the curve gets steeper), then decelerates (the curve gets less steep), and finally stabilizes. A curve of this shape is said to be sigmoid, and is typical of logistic population growth. A geometrically or exponentially growing population grows at an ever-increasing rate and does not stabilize. The size of the stable population is the carrying capacity, K, which is 50 in this example. 2. Inspect your graph of per capita birth and death rates against population size (this applies only if you used the version of the model with explicit birth and death rates). You should see the following: Per capita birth rate decreases as N t increases. Per capita death rate increases as N t increases. This is the meaning of density dependence: per capita birth and death rates change as N t changes. Per capita birth and death rates become equal when N t reaches K. (This was demonstrated algebraically in the Introduction to this exercise.) 3. Inspect your graph of N t and N t /N t, or dn/dt and dn/dt/n, against N t. You should see the following: N t or dn/dt starts low, rises to a maximum when N t K/2, and then declines to 0 when N t reaches K. This confirms what you saw in the graph of N t against time: The population grows fastest when its size is half its carrying capacity. This property of logistic models will be important in our harvesting model. N t /N t or dn/dt/n starts high, declines linearly as N t increases, and reaches 0 when N t reaches K. These two features differ from the exponential model, in which N t increased linearly with N t and N t /N t was constant. 4. If you extrapolate the line for N t /N t until it crosses both axes of the graph, its y-intercept is R and its x-intercept is K. If you extrapolate the line for dn/dt/n, its y-intercept is r and its x- intercept is K. You can use this method of analysis to estimate R (or r) and K for real populations from periodic population counts or estimates, even if you know nothing about per capita birth and death rates. You will use this analysis to answer Question Change the initial population size to 100 by entering that value into cell B6. Look at your graph of N t against time. In the discrete-time models, you should see the population start out at 100, fall below the carrying capacity, and then increase back to the carrying capacity of 50. Exercise 8 Page 1 of 6

2 Try other values for initial population size and see what happens. If you make the initial population too large, N t may go negative in the discrete-time models, which makes no sense. If you used the model with explicit birth and death rates, look at your graph of per capita birth and death rates against N t. It should resemble the graph below. Logistic Model, Explicit b and d Per capita birth and death rates Population size (Nt) Birth rate Death rate 6. Carrying capacity is a stable equilibrium. Two lines of evidence support this: Population size moves toward K from below (N 0 = 1) and from above (N 0 = 100). The lines for per capita births and deaths (graph above) cross at N t = K. When N t < K, per capita births are greater than per capita deaths, so the population will grow. When N t > K, per capita births are less than per capita deaths, so the population will shrink, returning toward K. At N t = K, per capita births and deaths are equal and the population stays at equilibrium. 7. You can use the spreadsheet to answer this question only if you built the version with explicit birth and death rates. To simplify matters, restore N 0 to 1.00, and set b = 2.00 and d = R will become Try making b = 0.04 and d = This represents a scenario in which per capita birth rate increases with increasing population size, while per capita death rate increases because of resource limitation. Your graph of N t should be a sigmoid curve stabilizing at N t = 100 = K. Your graph of per capita births and deaths should show both increasing, but because per capita deaths increase more steeply, the two lines still cross, producing a stable equilibrium at N t = 100. Exercise 8 Page 2 of 6

3 Exercise 8 Page 3 of 6

4 Try making b' = 0.02 and d' = This represents a scenario in which per capita birth rate decreases with increasing population size because of resource limitation, while per capita death rate decreases. Your graph of N t should be a sigmoid curve stabilizing at N t = 100 = K. Your graph of per capita births and deaths should show both decreasing, but because per capita births decrease more steeply, the two lines still cross, producing a stable equilibrium at N t = 100. The important point here is that the population will have a stable equilibrium size if the following conditions are met: Per capita births > per capita deaths when N t is small. Per capita births < per capita deaths when N t is large. You can use the spreadsheet to answer Questions 8 and 9 only if you built the version with explicit birth and death rates. 8. Set b = 1.50 and d = Set b' = 0 and d' = 0 and examine your graphs and spreadsheet. Then set b' = and d' = and examine your graphs and spreadsheet. In both cases, you should see that K becomes undefined that is, the spreadsheet will show an error message in the cell for K. (If your graph of N t /N t shows nonsensical ups and downs, make sure the minimum of the left-hand y-axis is set to zero.) You should also see that the population grows at an increasing rate. Does it grow geometrically (exponentially)? You can test this by changing the y-axis of the graph of N t against time to a logarithmic scale. It should become a straight line. Also examine the graph of N t /N t and its column in your spreadsheet. All this should convince you that the population grows exponentially. In both scenarios, even though per capita birth and death rates are changing, the difference between them is constant, as you can see by examining the graph of per capita birth and death rates (they will be parallel lines). The result is exponential population growth. Try other values of b' and d', keeping them equal to each other. 9. Set b = 1.25 and d = Set b' = and d' = Examine the graph of per capita birth and death rates. You should see per capita births increasing linearly, and per capita deaths decreasing linearly, with increasing N t. If your graph of N t against time has a linear y-axis, you will see what looks like an exponential curve. Try changing the y-axis to a logarithmic scale. You should see that the line still curves upward. What does this mean? It means the population is growing faster than exponentially. Examine the graph of N t /N t and its column in the spreadsheet. You should see that the per capita rate of population growth increases as the population grows, in contrast to an Exercise 8 Page 4 of 6

5 exponentially growing population, in which N t /N t is constant. Something like this may have occurred in human populations during demographic transitions. 10. You can use the spreadsheet to answer Question 10 only if you built one of the discrete-time models. If you built the model with explicit birth and death rates, set b = 2.00, d = 1.00, b' = 0.001, and d' = If you built the model with explicit carrying capacity, set N 0 = 1.00, R = 1.00, and K = 500. If you built the model with explicit birth and death rates, increase b by small increments, keeping the other parameters unchanged. If you built the model with explicit carrying capacity, increase R by small increments, keeping K unchanged. Your graph of N t will be easier to read if you remove the line connecting the data points. Double-click on one of the data points. In the resulting dialog box, select the Patterns tab. In the left-hand box, for Line, choose None. You should observe a variety of behaviors. The values given here are a few interesting examples. Try these, and experiment with others as well. We give values of b for the model with explicit birth and death rates, and values of R for the model with explicit carrying capacity. b = 2.00, R = 1.00: N t shows smooth sigmoid growth, stabilizing at K b = 2.50, R = 1.50: N t overshoots K slightly, but soon stabilizes at K. b = 2.75, R = 1.75: overshoot, followed by damped oscillations (decreasing amplitude), eventually stabilizing at K. b = 3.00, R = 2.00: overshoot, followed by persistent oscillations. Careful examination of the spreadsheet column of N t will reveal that these oscillations are also damped, but it will take much longer for N t to stabilize at K. b = 3.10, R = 2.10: oscillations of very slowly increasing amplitude. b = 3.25, R = 2.25: essentially stable oscillations around K. b = 3.50, R = 2.50: an interesting pattern, called a 2-point limit cycle, meaning oscillations of two amplitudes. A large oscillation is followed by a small one, which is followed by a large one, and so on. Not only 2-point cycles, but 4-, 8-, and 16-point cycles exist see if you can find them. b = 3.75, R = 2.75: Chaos! N t changes radically, and with no apparent pattern, from each time to the next. If you change the initial population size, you will see a completely different sequence of N t values. Examine your graph of N t and N t /N t against N t. You should see that even in the most chaotic scenarios, N t still forms a smooth parabola with its peak at N t = K/2, and N t /N t still Exercise 8 Page 5 of 6

6 forms a straight line with its y-intercept at R. This shows the order underlying the chaos of N t. In other words, the values of N t are not truly random, and we can recover an interpretable pattern from them with the proper analysis. 11. Recall from Exercise 7 that we calculated dn/dt/n of a continuous-time exponential model from population sizes by the formula dn/dt/n = r = ln(n t+1 /N t ). We can perform this calculation on human population estimates for 1963 to 2000 (available from the U.S. Census Bureau Web site, to estimate dn/dt/n for each time interval. This is one way to set up the spreadsheet: A B C D Date Year Nt dn/dt/n ,205,706, ,276,816, ,345,837, ,416,065, ,485,807, ,557,675, ,632,341, ,707,610, ,785,190, ,862,197, ,938,708, ,014,598, ,088,224, ,160,391, ,232,928, ,305,403, ,380,776, ,456,705, ,532,964, ,613,401, ,693,932, ,773,566, ,854,602, ,937,607, ,023,570, ,110,153, ,196,333, ,283,755, ,366,938, ,449,663, ,531,001, ,610,978, ,690,865, ,768,612, ,846,804, ,924,574, ,002,509, ,080,141,683 Exercise 8 Page 6 of 6

7 In this case, the formula in cell D6 is =LN(C7/C6), and this formula is pasted down the column to cell D42. As you did with your continuous-time logistic model, you can now graph dn/dt/n against N t. If you determine the linear trendline for the resulting graph, you can find the overall r as the y-intercept and K as the x-intercept. To add a linear trendline to the graph, click on the graph, then open Chart Add Trendline. Choose a Linear trendline and click on the Options tab. From the options, select Display equation on chart and Display R-squared value on chart. The resulting graph should look like the one below. Human Population 1963 to 2000: Logistic? Per capita change in population size y = -3E-12x R 2 = Population size (billions) The R 2 here refers to the coefficient of determination, not to the geometric growth factor. Such a high value of R 2 indicates that the trendline fits the data very well. The equation of the line is y = (10 12 )x, where y = dn/dt/n and x = N t. From this we can see that the y-intercept is , which we can take as an estimate of r. A little algebra shows that the x-intercept is 10,166,666,000, which we can take as an estimate of K. If we use these values in the continuous-time logistic model, with an initial population size of 3,205,706,699 (the population size in 1963), we get excellent agreement between predicted and observed population sizes through the year Exercise 8 Page 7 of 6

8 The Census Bureau projects a population of 9.1 billion in the year Extrapolating beyond the year 2000, our model reaches that population about 9 years later not bad for an estimate based solely on population sizes. Our model predicts a population of 10 billion in the year 2122, and reaches K at 10,166,666,000 in the year Remember, however, that projections are not guarantees. Future human population may behave quite differently, and such prognostications are an active area of research. Exercise 8 Page 8 of 6

Spreadsheet Directions

Spreadsheet Directions The Best Summer Job Offer Ever! Spreadsheet Directions Before beginning, answer questions 1 through 4. Now let s see if you made a wise choice of payment plan. Complete all the steps outlined below in

More information

MLC at Boise State Polynomials Activity 2 Week #3

MLC at Boise State Polynomials Activity 2 Week #3 Polynomials Activity 2 Week #3 This activity will discuss rate of change from a graphical prespective. We will be building a t-chart from a function first by hand and then by using Excel. Getting Started

More information

HARVEST MODELS INTRODUCTION. Objectives

HARVEST MODELS INTRODUCTION. Objectives 29 HARVEST MODELS Objectives Understand the concept of recruitment rate and its relationship to sustainable harvest. Understand the concepts of maximum sustainable yield, fixed-quota harvest, and fixed-effort

More information

MLC at Boise State Logarithms Activity 6 Week #8

MLC at Boise State Logarithms Activity 6 Week #8 Logarithms Activity 6 Week #8 In this week s activity, you will continue to look at the relationship between logarithmic functions, exponential functions and rates of return. Today you will use investing

More information

Introduction to Population Modeling

Introduction to Population Modeling Introduction to Population Modeling In addition to estimating the size of a population, it is often beneficial to estimate how the population size changes over time. Ecologists often uses models to create

More information

Applications of Exponential Functions Group Activity 7 Business Project Week #10

Applications of Exponential Functions Group Activity 7 Business Project Week #10 Applications of Exponential Functions Group Activity 7 Business Project Week #10 In the last activity we looked at exponential functions. This week we will look at exponential functions as related to interest

More information

MLC at Boise State Polynomials Activity 3 Week #5

MLC at Boise State Polynomials Activity 3 Week #5 Polynomials Activity 3 Week #5 This activity will be discuss maximums, minimums and zeros of a quadratic function and its application to business, specifically maximizing profit, minimizing cost and break-even

More information

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 Price

$0.00 $0.50 $1.00 $1.50 $2.00 $2.50 $3.00 $3.50 $4.00 Price Orange Juice Sales and Prices In this module, you will be looking at sales and price data for orange juice in grocery stores. You have data from 83 stores on three brands (Tropicana, Minute Maid, and the

More information

Computing interest and composition of functions:

Computing interest and composition of functions: Computing interest and composition of functions: In this week, we are creating a simple and compound interest calculator in EXCEL. These two calculators will be used to solve interest questions in week

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

Slope-Intercept Form Practice True False Questions Indicate True or False for the following Statements.

Slope-Intercept Form Practice True False Questions Indicate True or False for the following Statements. www.ck2.org Slope-Intercept Form Practice True False Questions Indicate True or False for the following Statements.. The slope-intercept form of the linear equation makes it easier to graph because the

More information

WEB APPENDIX 8A 7.1 ( 8.9)

WEB APPENDIX 8A 7.1 ( 8.9) WEB APPENDIX 8A CALCULATING BETA COEFFICIENTS The CAPM is an ex ante model, which means that all of the variables represent before-the-fact expected values. In particular, the beta coefficient used in

More information

Math 1526 Summer 2000 Session 1

Math 1526 Summer 2000 Session 1 Math 1526 Summer 2 Session 1 Lab #2 Part #1 Rate of Change This lab will investigate the relationship between the average rate of change, the slope of a secant line, the instantaneous rate change and the

More information

BACKGROUND KNOWLEDGE for Teachers and Students

BACKGROUND KNOWLEDGE for Teachers and Students Pathway: Agribusiness Lesson: ABR B4 1: The Time Value of Money Common Core State Standards for Mathematics: 9-12.F-LE.1, 3 Domain: Linear, Quadratic, and Exponential Models F-LE Cluster: Construct and

More information

ECON 302 Fall 2009 Assignment #2 1

ECON 302 Fall 2009 Assignment #2 1 ECON 302 Assignment #2 1 Homework will be graded for both content and neatness. Sloppy or illegible work will not receive full credit. This homework requires the use of Microsoft Excel. 1) The following

More information

MLC at Boise State Lines and Rates Activity 1 Week #2

MLC at Boise State Lines and Rates Activity 1 Week #2 Lines and Rates Activity 1 Week #2 This activity will use slopes to calculate marginal profit, revenue and cost of functions. What is Marginal? Marginal cost is the cost added by producing one additional

More information

Section 4.3 Objectives

Section 4.3 Objectives CHAPTER ~ Linear Equations in Two Variables Section Equation of a Line Section Objectives Write the equation of a line given its graph Write the equation of a line given its slope and y-intercept Write

More information

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5 Economics 2 Spring 2017 Professor Christina Romer Professor David Romer SUGGESTED ANSWERS TO PROBLEM SET 5 1. The tool we use to analyze the determination of the normal real interest rate and normal investment

More information

Prepared By. Handaru Jati, Ph.D. Universitas Negeri Yogyakarta.

Prepared By. Handaru Jati, Ph.D. Universitas Negeri Yogyakarta. Prepared By Handaru Jati, Ph.D Universitas Negeri Yogyakarta handaru@uny.ac.id Chapter 7 Statistical Analysis with Excel Chapter Overview 7.1 Introduction 7.2 Understanding Data 7.2.1 Descriptive Statistics

More information

Jacob: The illustrative worksheet shows the values of the simulation parameters in the upper left section (Cells D5:F10). Is this for documentation?

Jacob: The illustrative worksheet shows the values of the simulation parameters in the upper left section (Cells D5:F10). Is this for documentation? PROJECT TEMPLATE: DISCRETE CHANGE IN THE INFLATION RATE (The attached PDF file has better formatting.) {This posting explains how to simulate a discrete change in a parameter and how to use dummy variables

More information

NOTE: A trend line cannot be added to data series in a stacked, 3-D, radar, pie, surface, or doughnut chart.

NOTE: A trend line cannot be added to data series in a stacked, 3-D, radar, pie, surface, or doughnut chart. Add a Trend Line to a Chart A trend line or moving average can be added to any data series in an unstacked, 2-D, area, bar, column, line, stock, xy (scatter), or bubble chart. NOTE: A trend line cannot

More information

This homework assignment uses the material on pages ( A moving average ).

This homework assignment uses the material on pages ( A moving average ). Module 2: Time series concepts HW Homework assignment: equally weighted moving average This homework assignment uses the material on pages 14-15 ( A moving average ). 2 Let Y t = 1/5 ( t + t-1 + t-2 +

More information

L K Y Marginal Product of Labor (MPl) Labor Productivity (Y/L)

L K Y Marginal Product of Labor (MPl) Labor Productivity (Y/L) Economics 102 Summer 2017 Answers to Homework #4 Due 6/19/17 Directions: The homework will be collected in a box before the lecture. Please place your name, TA name and section number on top of the homework

More information

Exponential Functions

Exponential Functions Exponential Functions In this chapter, a will always be a positive number. For any positive number a>0, there is a function f : R (0, ) called an exponential function that is defined as f(x) =a x. For

More information

Comparing Linear Increase and Exponential Growth

Comparing Linear Increase and Exponential Growth Lesson 7-7 Comparing Linear Increase and Exponential Growth Lesson 7-7 BIG IDEA In the long run, exponential growth always overtakes linear (constant) increase. In the patterns that are constant increase/decrease

More information

MATH THAT MAKES ENTS

MATH THAT MAKES ENTS On December 31, 2012, Curtis and Bill each had $1000 to start saving for retirement. The two men had different ideas about the best way to save, though. Curtis, who doesn t trust banks, put his money in

More information

Jacob: What data do we use? Do we compile paid loss triangles for a line of business?

Jacob: What data do we use? Do we compile paid loss triangles for a line of business? PROJECT TEMPLATES FOR REGRESSION ANALYSIS APPLIED TO LOSS RESERVING BACKGROUND ON PAID LOSS TRIANGLES (The attached PDF file has better formatting.) {The paid loss triangle helps you! distinguish between

More information

AP Statistics Chapter 6 - Random Variables

AP Statistics Chapter 6 - Random Variables AP Statistics Chapter 6 - Random 6.1 Discrete and Continuous Random Objective: Recognize and define discrete random variables, and construct a probability distribution table and a probability histogram

More information

Continuous random variables

Continuous random variables Continuous random variables probability density function (f(x)) the probability distribution function of a continuous random variable (analogous to the probability mass function for a discrete random variable),

More information

Final Project. College Algebra. Upon successful completion of this course, the student will be able to:

Final Project. College Algebra. Upon successful completion of this course, the student will be able to: COURSE OBJECTIVES Upon successful completion of this course, the student will be able to: 1. Perform operations on algebraic expressions 2. Perform operations on functions expressed in standard function

More information

Buying A Car. Mathematics Capstone Course

Buying A Car. Mathematics Capstone Course Buying A Car Mathematics Capstone Course I. UNIT OVERVIEW & PURPOSE: In this lesson the student will be asked to search the Internet and find a car that he/she would like to purchase. The student will

More information

1. Actual estimation may be more complex because of the use of statistical methods.

1. Actual estimation may be more complex because of the use of statistical methods. Learning Objectives: Understand inflation Use terminology related to inflation Choose a base year Calculate constant dollars Choose a deflator MODULE 7 Inflation We use the term inflation to indicate the

More information

FORECASTING & BUDGETING

FORECASTING & BUDGETING FORECASTING & BUDGETING W I T H E X C E L S S O L V E R WHAT IS SOLVER? Solver is an add-in that comes pre-built into Microsoft Excel. Simply put, it allows you to set an objective value which is subject

More information

Chapter 7 Notes. Random Variables and Probability Distributions

Chapter 7 Notes. Random Variables and Probability Distributions Chapter 7 Notes Random Variables and Probability Distributions Section 7.1 Random Variables Give an example of a discrete random variable. Give an example of a continuous random variable. Exercises # 1,

More information

Computing compound interest and composition of functions

Computing compound interest and composition of functions Computing compound interest and composition of functions In today s topic we will look at using EXCEL to compute compound interest. The method we will use will also allow us to discuss composition of functions.

More information

LINES AND SLOPES. Required concepts for the courses : Micro economic analysis, Managerial economy.

LINES AND SLOPES. Required concepts for the courses : Micro economic analysis, Managerial economy. LINES AND SLOPES Summary 1. Elements of a line equation... 1 2. How to obtain a straight line equation... 2 3. Microeconomic applications... 3 3.1. Demand curve... 3 3.2. Elasticity problems... 7 4. Exercises...

More information

Best Reply Behavior. Michael Peters. December 27, 2013

Best Reply Behavior. Michael Peters. December 27, 2013 Best Reply Behavior Michael Peters December 27, 2013 1 Introduction So far, we have concentrated on individual optimization. This unified way of thinking about individual behavior makes it possible to

More information

How Much Money Should Dr. Evil Demand?

How Much Money Should Dr. Evil Demand? robertkaplinsky.com http://robertkaplinsky.com/work/dr-evil/ How Much Money Should Dr. Evil Demand? The Situation The Challenge(s) How much money should Dr. Evil demand? What would the inflation rate have

More information

= quantity of ith good bought and consumed. It

= quantity of ith good bought and consumed. It Chapter Consumer Choice and Demand The last chapter set up just one-half of the fundamental structure we need to determine consumer behavior. We must now add to this the consumer's budget constraint, which

More information

Function Transformation Exploration

Function Transformation Exploration Name Date Period Function Transformation Exploration Directions: This exploration is designed to help you see the patterns in function transformations. If you already know these transformations or if you

More information

Business Calculus Chapter Zero

Business Calculus Chapter Zero Business Calculus Chapter Zero Are you a little rusty since coming back from your semi-long math break? Even worst have you forgotten all you learned from your previous Algebra course? If so, you are so

More information

Lesson Exponential Models & Logarithms

Lesson Exponential Models & Logarithms SACWAY STUDENT HANDOUT SACWAY BRAINSTORMING ALGEBRA & STATISTICS STUDENT NAME DATE INTRODUCTION Compound Interest When you invest money in a fixed- rate interest earning account, you receive interest at

More information

You should already have a worksheet with the Basic Plus Plan details in it as well as another plan you have chosen from ehealthinsurance.com.

You should already have a worksheet with the Basic Plus Plan details in it as well as another plan you have chosen from ehealthinsurance.com. In earlier technology assignments, you identified several details of a health plan and created a table of total cost. In this technology assignment, you ll create a worksheet which calculates the total

More information

Lesson 21: Comparing Linear and Exponential Functions Again

Lesson 21: Comparing Linear and Exponential Functions Again : Comparing Linear and Exponential Functions Again Student Outcomes Students create models and understand the differences between linear and exponential models that are represented in different ways. Lesson

More information

INSTITUTE AND FACULTY OF ACTUARIES AUDIT TRAIL

INSTITUTE AND FACULTY OF ACTUARIES AUDIT TRAIL INSTITUTE AND FACULTY OF ACTUARIES AUDIT TRAIL April 2017 CA2: Model Documentation, Analysis and Reporting Paper 1 Institute and Faculty of Actuaries Student loan repayment model Objective The Dean of

More information

Characterization of the Optimum

Characterization of the Optimum ECO 317 Economics of Uncertainty Fall Term 2009 Notes for lectures 5. Portfolio Allocation with One Riskless, One Risky Asset Characterization of the Optimum Consider a risk-averse, expected-utility-maximizing

More information

Finance Mathematics. Part 1: Terms and their meaning.

Finance Mathematics. Part 1: Terms and their meaning. Finance Mathematics Part 1: Terms and their meaning. Watch the video describing call and put options at http://www.youtube.com/watch?v=efmtwu2yn5q and use http://www.investopedia.com or a search. Look

More information

M249 Diagnostic Quiz

M249 Diagnostic Quiz THE OPEN UNIVERSITY Faculty of Mathematics and Computing M249 Diagnostic Quiz Prepared by the Course Team [Press to begin] c 2005, 2006 The Open University Last Revision Date: May 19, 2006 Version 4.2

More information

Math Performance Task Teacher Instructions

Math Performance Task Teacher Instructions Math Performance Task Teacher Instructions Stock Market Research Instructions for the Teacher The Stock Market Research performance task centers around the concepts of linear and exponential functions.

More information

GDP = Connsumption + Investments + Government Spending + Exports - Imports

GDP = Connsumption + Investments + Government Spending + Exports - Imports Name: Erik Ishimatsu Section: http://erikishimatsuportfolio.weebly.com/econ-2020.html E-Portfolio Signature Assignment Salt Lake Community College Macroeconomics - Econ 2020 Professor: Heather A Schumacker

More information

Arius Deterministic Exhibit Statistics

Arius Deterministic Exhibit Statistics Arius Deterministic Exhibit Statistics Milliman, Inc. 3424 Peachtree Road, NE Suite 1900 Atlanta, GA 30326 USA Tel +1 800 404 2276 Fax +1 404 237 6984 actuarialsoftware.com Information in this document

More information

Elementary Statistics Triola, Elementary Statistics 11/e Unit 14 The Confidence Interval for Means, σ Unknown

Elementary Statistics Triola, Elementary Statistics 11/e Unit 14 The Confidence Interval for Means, σ Unknown Elementary Statistics We are now ready to begin our exploration of how we make estimates of the population mean. Before we get started, I want to emphasize the importance of having collected a representative

More information

Chapter 4 Factoring and Quadratic Equations

Chapter 4 Factoring and Quadratic Equations Chapter 4 Factoring and Quadratic Equations Lesson 1: Factoring by GCF, DOTS, and Case I Lesson : Factoring by Grouping & Case II Lesson 3: Factoring by Sum and Difference of Perfect Cubes Lesson 4: Solving

More information

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0,

QUADRATIC. Parent Graph: How to Tell it's a Quadratic: Helpful Hints for Calculator Usage: Domain of Parent Graph:, Range of Parent Graph: 0, Parent Graph: How to Tell it's a Quadratic: If the equation's largest exponent is 2 If the graph is a parabola ("U"-Shaped) Opening up or down. QUADRATIC f x = x 2 Domain of Parent Graph:, Range of Parent

More information

Math 116: Business Calculus

Math 116: Business Calculus Math 116: Business Calculus Instructor: Colin Clark Spring 2017 Exam 1 - Thursday February 9. 1.1 Slopes and Equations of Lines. 1.2 Linear Functions and Applications. 2.1 Properties of Functions. 2.2

More information

Topic #1: Evaluating and Simplifying Algebraic Expressions

Topic #1: Evaluating and Simplifying Algebraic Expressions John Jay College of Criminal Justice The City University of New York Department of Mathematics and Computer Science MAT 105 - College Algebra Departmental Final Examination Review Topic #1: Evaluating

More information

Interest Compounded Annually. Table 3.27 Interest Computed Annually

Interest Compounded Annually. Table 3.27 Interest Computed Annually 33 CHAPTER 3 Exponential, Logistic, and Logarithmic Functions 3.6 Mathematics of Finance What you ll learn about Interest Compounded Annually Interest Compounded k Times per Year Interest Compounded Continuously

More information

Week 19 Algebra 2 Assignment:

Week 19 Algebra 2 Assignment: Week 9 Algebra Assignment: Day : pp. 66-67 #- odd, omit #, 7 Day : pp. 66-67 #- even, omit #8 Day : pp. 7-7 #- odd Day 4: pp. 7-7 #-4 even Day : pp. 77-79 #- odd, 7 Notes on Assignment: Pages 66-67: General

More information

The Zero Product Law. Standards:

The Zero Product Law. Standards: Objective: Students will be able to (SWBAT) use complex numbers in polynomial identities and equations, in order to (IOT) solve quadratic equations with real coefficient that have complex solutions. Standards:

More information

Problem Set 2. PPPA 6022 Due in class, on paper, March 5. Some overall instructions:

Problem Set 2. PPPA 6022 Due in class, on paper, March 5. Some overall instructions: Problem Set 2 PPPA 6022 Due in class, on paper, March 5 Some overall instructions: Please use a do-file (or its SAS or SPSS equivalent) for this work do not program interactively! I have provided Stata

More information

Linear Modeling Business 5 Supply and Demand

Linear Modeling Business 5 Supply and Demand Linear Modeling Business 5 Supply and Demand Supply and demand is a fundamental concept in business. Demand looks at the Quantity (Q) of a product that will be sold with respect to the Price (P) the product

More information

WEEK 2 REVIEW. Straight Lines (1.2) Linear Models (1.3) Intersection Points (1.4) Least Squares (1.5)

WEEK 2 REVIEW. Straight Lines (1.2) Linear Models (1.3) Intersection Points (1.4) Least Squares (1.5) WEEK 2 REVIEW Straight Lines (1.2) Linear Models (1.3) Intersection Points (1.4) Least Squares (1.5) 1 STRAIGHT LINES SLOPE A VERTICAL line has NO SLOPE. All other lines have a slope given by m = rise

More information

starting on 5/1/1953 up until 2/1/2017.

starting on 5/1/1953 up until 2/1/2017. An Actuary s Guide to Financial Applications: Examples with EViews By William Bourgeois An actuary is a business professional who uses statistics to determine and analyze risks for companies. In this guide,

More information

Lesson 6: Exponential Growth U.S. Population and World Population

Lesson 6: Exponential Growth U.S. Population and World Population Exponential Growth U.S. Population and World Population Classwork Mathematical Modeling Exercise 1 Callie and Joe are examining the population data in the graphs below for a history report. Their comments

More information

14.02 PRINCIPLES OF MACROECONOMICS QUIZ 1

14.02 PRINCIPLES OF MACROECONOMICS QUIZ 1 14.02 PRINCIPLES OF MACROECONOMICS QUIZ 1 READ INSTRUCTIONS FIRST: Clearly label all of your graphs, including axes. Show your work on all questions in order to receive partial credit. The quiz is worth

More information

Unit 7 Exponential Functions. Name: Period:

Unit 7 Exponential Functions. Name: Period: Unit 7 Exponential Functions Name: Period: 1 AIM: YWBAT evaluate and graph exponential functions. Do Now: Your soccer team wants to practice a drill for a certain amount of time each day. Which plan will

More information

Name: Common Core Algebra L R Final Exam 2015 CLONE 3 Teacher:

Name: Common Core Algebra L R Final Exam 2015 CLONE 3 Teacher: 1) Which graph represents a linear function? 2) Which relation is a function? A) B) A) {(2, 3), (3, 9), (4, 7), (5, 7)} B) {(0, -2), (3, 10), (-2, -4), (3, 4)} C) {(2, 7), (2, -3), (1, 1), (3, -1)} D)

More information

Chapter 7 1. Random Variables

Chapter 7 1. Random Variables Chapter 7 1 Random Variables random variable numerical variable whose value depends on the outcome of a chance experiment - discrete if its possible values are isolated points on a number line - continuous

More information

HandDA program instructions

HandDA program instructions HandDA program instructions All materials referenced in these instructions can be downloaded from: http://www.umass.edu/resec/faculty/murphy/handda/handda.html Background The HandDA program is another

More information

Common Core Algebra L clone 4 review R Final Exam

Common Core Algebra L clone 4 review R Final Exam 1) Which graph represents an exponential function? A) B) 2) Which relation is a function? A) {(12, 13), (14, 19), (11, 17), (14, 17)} B) {(20, -2), (24, 10), (-21, -5), (22, 4)} C) {(34, 8), (32, -3),

More information

* The Unlimited Plan costs $100 per month for as many minutes as you care to use.

* The Unlimited Plan costs $100 per month for as many minutes as you care to use. Problem: You walk into the new Herizon Wireless store, which just opened in the mall. They offer two different plans for voice (the data and text plans are separate): * The Unlimited Plan costs $100 per

More information

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25

2) Endpoints of a diameter (-1, 6), (9, -2) A) (x - 2)2 + (y - 4)2 = 41 B) (x - 4)2 + (y - 2)2 = 41 C) (x - 4)2 + y2 = 16 D) x2 + (y - 2)2 = 25 Math 101 Final Exam Review Revised FA17 (through section 5.6) The following problems are provided for additional practice in preparation for the Final Exam. You should not, however, rely solely upon these

More information

Claims Reserve Calculator. User Guide

Claims Reserve Calculator. User Guide Claims Reserve Calculator User Guide CONTENT 1 Introduction... 3 2 Demo version and activation... 6 3 Using the application... 8 3.1 Claims data specification... 8 3.1.1. Data table... 9 3.1.2. Triangle...

More information

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48 Systems of Ordinary Differential Equations Lectures INF2320 p. 1/48 Lectures INF2320 p. 2/48 ystems of ordinary differential equations Last two lectures we have studied models of the form y (t) = F(y),

More information

ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA

ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA ESTIMATING THE DISTRIBUTION OF DEMAND USING BOUNDED SALES DATA Michael R. Middleton, McLaren School of Business, University of San Francisco 0 Fulton Street, San Francisco, CA -00 -- middleton@usfca.edu

More information

~ In 20X7, a loaf of bread costs $1.50 and a flask of wine costs $6.00. A consumer with $120 buys 40 loaves of bread and 10 flasks of wine.

~ In 20X7, a loaf of bread costs $1.50 and a flask of wine costs $6.00. A consumer with $120 buys 40 loaves of bread and 10 flasks of wine. Microeconomics, budget line, final exam practice problems (The attached PDF file has better formatting.) *Question 1.1: Slope of Budget Line ~ In 20X7, a loaf of bread costs $1.50 and a flask of wine costs

More information

Economics 201 Fall 2010 Introduction to Economic Analysis Problem Set #1 Due: Wednesday, September 8

Economics 201 Fall 2010 Introduction to Economic Analysis Problem Set #1 Due: Wednesday, September 8 Economics 201 Fall 2010 Introduction to Economic Analysis Jeffrey Parker Problem Set #1 Due: Wednesday, September 8 Instructions: This problem set is due in class on Wednesday, September 8. Each student

More information

Appendix A. Selecting and Using Probability Distributions. In this appendix

Appendix A. Selecting and Using Probability Distributions. In this appendix Appendix A Selecting and Using Probability Distributions In this appendix Understanding probability distributions Selecting a probability distribution Using basic distributions Using continuous distributions

More information

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE

AP STATISTICS FALL SEMESTSER FINAL EXAM STUDY GUIDE AP STATISTICS Name: FALL SEMESTSER FINAL EXAM STUDY GUIDE Period: *Go over Vocabulary Notecards! *This is not a comprehensive review you still should look over your past notes, homework/practice, Quizzes,

More information

An Excel Modeling Practice Problem

An Excel Modeling Practice Problem An Excel Modeling Practice Problem Excel Review Excel 97 1999-2000 The Padgett s Widgets Problem Market research by Padgett s Widget Company has revealed that the demand for its products varies with the

More information

8.1 Estimation of the Mean and Proportion

8.1 Estimation of the Mean and Proportion 8.1 Estimation of the Mean and Proportion Statistical inference enables us to make judgments about a population on the basis of sample information. The mean, standard deviation, and proportions of a population

More information

Cost Volume Profit Analysis

Cost Volume Profit Analysis 4 Cost Volume Profit Analysis Cost Volume Profit Analysis 4 LEARNING OUTCOMES After completing this chapter, you should be able to: explain the concept of contribution and its use in cost volume profi

More information

Equations. Krista Hauri I2T2 Project

Equations. Krista Hauri I2T2 Project Applied Linear Equations Krista Hauri I2T2 Project Grade Level: 9 th Intergraded Algebra 1 Time Span : 5 (40 minute) days Tools: Calculator Base Ranger (CBR) at least 4 TI-84 Graphing Calculator for each

More information

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5

Professor Christina Romer SUGGESTED ANSWERS TO PROBLEM SET 5 Economics 2 Spring 2016 Professor Christina Romer Professor David Romer SUGGESTED ANSWERS TO PROBLEM SET 5 1. The left-hand diagram below shows the situation when there is a negotiated real wage,, that

More information

Logarithmic and Exponential Functions

Logarithmic and Exponential Functions Asymptotes and Intercepts Logarithmic and exponential functions have asymptotes and intercepts. Consider the functions f(x) = log ax and f(x) = lnx. Both have an x-intercept at (1, 0) and a vertical asymptote

More information

Financial Literacy in Mathematics

Financial Literacy in Mathematics Lesson 1: Earning Money Math Learning Goals Students will: make connections between various types of payment for work and their graphical representations represent weekly pay, using equations and graphs

More information

To compare the different growth patterns for a sum of money invested under a simple interest plan and a compound interest plan.

To compare the different growth patterns for a sum of money invested under a simple interest plan and a compound interest plan. Student Activity 7 8 9 10 11 12 Aim TI-Nspire CAS Investigation Student 180min To compare the different growth patterns for a sum of money invested under a simple interest plan and a compound interest

More information

Modelling the average income dependence on work experience in the USA from 1967 to 2002

Modelling the average income dependence on work experience in the USA from 1967 to 2002 Modelling the average income dependence on work experience in the USA from 1967 to 2002 Ivan O. Kitov Abstract The average and median income dependence on work experience and time is analyzed and modeled

More information

Sterman, J.D Business dynamics systems thinking and modeling for a complex world. Boston: Irwin McGraw Hill

Sterman, J.D Business dynamics systems thinking and modeling for a complex world. Boston: Irwin McGraw Hill Sterman,J.D.2000.Businessdynamics systemsthinkingandmodelingfora complexworld.boston:irwinmcgrawhill Chapter7:Dynamicsofstocksandflows(p.231241) 7 Dynamics of Stocks and Flows Nature laughs at the of integration.

More information

3.1 Solutions to Exercises

3.1 Solutions to Exercises .1 Solutions to Exercises 1. (a) f(x) will approach + as x approaches. (b) f(x) will still approach + as x approaches -, because any negative integer x will become positive if it is raised to an even exponent,

More information

Chapter 21: Savings Models Lesson Plan

Chapter 21: Savings Models Lesson Plan Lesson Plan For All Practical Purposes Arithmetic Growth and Simple Interest Geometric Growth and Compound Interest Mathematical Literacy in Today s World, 8th ed. A Limit to Compounding A Model for Saving

More information

When determining but for sales in a commercial damages case,

When determining but for sales in a commercial damages case, JULY/AUGUST 2010 L I T I G A T I O N S U P P O R T Choosing a Sales Forecasting Model: A Trial and Error Process By Mark G. Filler, CPA/ABV, CBA, AM, CVA When determining but for sales in a commercial

More information

Continuous Probability Distributions

Continuous Probability Distributions 8.1 Continuous Probability Distributions Distributions like the binomial probability distribution and the hypergeometric distribution deal with discrete data. The possible values of the random variable

More information

Math of Finance Exponential & Power Functions

Math of Finance Exponential & Power Functions The Right Stuff: Appropriate Mathematics for All Students Promoting the use of materials that engage students in meaningful activities that promote the effective use of technology to support mathematics,

More information

Chapter 5, CVP Study Guide

Chapter 5, CVP Study Guide Chapter 5, CVP Study Guide Chapter theme: Cost-volume-profit (CVP) analysis helps managers understand the interrelationships among cost, volume, and profit by focusing their attention on the interactions

More information

DATA HANDLING Five-Number Summary

DATA HANDLING Five-Number Summary DATA HANDLING Five-Number Summary The five-number summary consists of the minimum and maximum values, the median, and the upper and lower quartiles. The minimum and the maximum are the smallest and greatest

More information

Interest Formulas. Simple Interest

Interest Formulas. Simple Interest Interest Formulas You have $1000 that you wish to invest in a bank. You are curious how much you will have in your account after 3 years since banks typically give you back some interest. You have several

More information

14.02 Principles of Macroeconomics Problem Set 1 Solutions Spring 2003

14.02 Principles of Macroeconomics Problem Set 1 Solutions Spring 2003 14.02 Principles of Macroeconomics Problem Set 1 Solutions Spring 2003 Question 1 : Short answer (a) (b) (c) (d) (e) TRUE. Recall that in the basic model in Chapter 3, autonomous spending is given by c

More information

Introduction to Time Series Analysis. Madrid, Spain September Case study: exploring a time series and achieving stationarity

Introduction to Time Series Analysis. Madrid, Spain September Case study: exploring a time series and achieving stationarity Introduction to Series Analysis Madrid, Spain -4 September 27 Case study: exploring a time series and achieving stationarity Objectives: at the end of the case study, the participant should Understand

More information

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation

Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation Further Mathematics 2016 Core: RECURSION AND FINANCIAL MODELLING Chapter 6 Interest and depreciation Key knowledge the use of first- order linear recurrence relations to model flat rate and unit cost and

More information