LOSS OF CUSTOMER GOODWILL IN THE SINGLE ITEM LOT-SIZING PROBLEM WITH IMMEDIATE LOST SALES

Size: px
Start display at page:

Download "LOSS OF CUSTOMER GOODWILL IN THE SINGLE ITEM LOT-SIZING PROBLEM WITH IMMEDIATE LOST SALES"

Transcription

1 Istanbul, July 6 th 23 EURO/INFORMS Joint International Meeting 23 LOSS OF CUSTOMER GOODWILL IN THE SINGLE ITEM LOT-SIZING PROBLEM WITH IMMEDIATE LOST SALES Deniz Aksen College of Administrative Sciences and Economics Koç University SarÕyer, ISTANBUL Kemal AltÕnkemer Krannert Graduate School of Management Purdue University West Lafayette, INDIANA Introduction: Lot-sizing Solution to the tradeoff between inventory holding costs and setup costs. Dynamic demand streams or rates bankrupt the nice formulae of EOQ 2 Scommon Daverage and EOQ with backlogging: hcommon + h b 2 S common Daverage hcommon bcommon common common 2 S common Daverage hcommon bcommon hcommon + bcommon When also cost data is changing over time, then lot-sizing techniques become indispensable. 2 1

2 Introduction: Lot-sizing Pioneering work: Wagner-Whitin Model W-W (18) Single-item, deterministic, uncapacitated, finite planning horizon, time-variant demand and setup costs, zero production (procurement) costs. Also time-variant production and inventory holding costs. c t, h t, S t,d t 3 Lot-sizing Literature Alternative Variants and Solution Techniques for the W-W Model without backlogging (w/o backordering) : Faster Myopic Lot-sizing Heuristics Silver and Meal (173) Groff (17 Faster Optimal Algorithms for the W-W model with uniform costs Federgruen and Tzur () : O(T log T ) or O(T ) Wagelmans, Van Hoesel, and Kolen (11) O(T log T ) or O(T ) 4 Forecasting demand beyond the planning horizon Stadtler (2) : rolling schedules 2

3 Lot-sizing Literature The version with backlogging: satisfy demand in a later period of the planning horizon. Zangwill (16, 186) Blackburn and Kunreuther (174) Pochet and Wolsey (188) Webster (18) Choo and Chan () Gupta and Brennan (12) Lot-sizing Literature Capacitated Multi-Item Version of Dynamic Lot-Sizing: Eisenhut (17) Lambrecht and Vanderveken (17) Dixon and Silver (181) Do ramacõ, Panayiotopoulos, and Adam (181) Karni and Roll (182) Thizy and Van Wassenhove (18) Fleischmann (188) KÕrca and Kökten (14) 6 3

4 Lot-sizing Literature Dynamic Lot-Sizing with Lost Sales : demand is not backlogged, but it does not have to be satisfied either. Sandbothe and Thompson (, 13) Loss of demand incurs a unit cost. There are uniform or period-dependent capacity constraints. All costs are time-invariant. p, c, h, S, d t 7 Lot-sizing Literature Excellent Surveys: Maes and Van Wassenhove (188) Multi-item single-level capacitated lot-sizing heuristics: a general review Baker (18) Journal of Operational Research Society 3 (11) 1-4. Lot-sizing procedures and a standard data set. A reconciliation of the literature. Journal of Manufacturing Operations Management Saydam and Evans () A comparative performance analysis of the Wagner-Whitin algorithm and lot-sizing heuristics. Computers & Industrial Engineering 18 (1)

5 Lot-sizing Literature Excellent Surveys: Salomon, Kroon, Kuik, and Van Wassenhove (11) Some extension of the discrete lotsizing and scheduling problem. Management Science 37 (7) Kuik, Salomon and Van Wassenhove (14) Batching decisions: Structure and models. European Journal of Operational Research 7 (2) Solving Dynamic Lot-sizing Models W-W model solved to optimality with a Forward- Recursive Dynamic Programming (DP) algorithm requiring O(T 2 ) CPU time and memory storage. Efficient Implementation by James R. Evans (18) k k 1 k M = S + c d + h d jk j j t t r t= j t= j r= t+ 1 F = minimum F + M, j = argmin F + M * k 1 j k j 1 jk k 1 j k j 1 jk

6 Solving Single-Item Dynamic Lot-sizing Models P Network Representations X 1 X 2 X 3 X T M T I 1 I 2 I 3 I T 1 d 1 L 1 d 2 L 2 d 3 L 3 d T L T d 1 d 2 d 3 d T 11 1 L 2 3 L 1 L 2 L 3 L T T Shortest Path (SP) network and Dijkstra s Algorithm For the W-W model w/o backlogging A concave cost network flow problem For the W-W model w/ backlogging For the W-W model w/ lost sales Modifying the model of Sandbothe Thompson () Aksen, AltÕnkemer, Chand (23) p, c, h, S, d t p t, c t, h t, S t, d t Demand &DSDFLW\FRQVWUDLQWVOLIWHG 14, 1, 8, 6, 4, Spring Summer Fall Winter Demand 3, 11,7 4, Price $1 $21 $12 $18 Season Seasonal demand levels vs. prices $21 $18 $1 $12 $ $6 $3 $ Price 12 6

7 min j, t The AAC model of dynamic lot-sizing Maximize the net profit from realized sales. An efficient algorithm with O(T 2 ) CPU time and memory storage. Exploit the structural properties of an optimal solution. Inspiration from the DP Algorithm of the W-W Model. Gross Marginal Profit is never negative! Lemma 1. L * t X* t = t {1, 2,, T} Zero-Inventory Ordering Policy of W-W W solution Lemma 2. I * t 1 X * t = t {1, 2,, T} Lemma 3. L * t (d t L* t )= t {1, 2,, T} 13 min j, t The AAC model of dynamic lot-sizing Definition 1a. Period t is a regeneration period if (I t = ) and (L t = ). Definition 1b. Period t is a production period if (X t > ). Definition 1c. Period t is a loss period if (I t > ). Definition 1d. Period t is a stockout period if (I t > ) and (I t = ). Definition 1e. Period t is a conservation period if (L t > ) and (I t > ). X t+1 I t+1 > I t+2 > I l 1 > I I k = l > I k 1 > L j+1 L j+2 t+1 t+2 l 1 L l l k 1 k j j+1 j+2 t I j = I j+1 = I j+2 = I t = d d t+2 d l 1 d k 1 d t+1 k 14 7

8 Optimally solving the AAC lot-sizing model Forward Recursive DP Formulation with cumulative best cost of handling definitions Tradeoff MC jt = minimum{ p t, c j + H t 1 H j 1 } /LQNHG/LVW. j = {k j+1, T : c j + H k 1 H j 1 > p k } Minimum Cost of handling periods 1, t with a last production made in period j C j (t)= C j (t 1) + MC jt d t C t (t)= F t 1 + S t + c t d t * { ()}, { ()} F = minimum C t j = argmin C t t j t j j, t j, t 1 Expanding the AAC model: Loss of Customer Goodwill Cost of Losing Demand > Gross Profit of Lost Demand Diminishing impact on the next demand : Goodwill Loss Extends to exactly one period following the current Effective Demand = Original Demand Diminishing Impact e t = d t LG t Diminishing impact in period t depends ONLY on the amount of effective demand PURPOSELY NOT SATISFIED in period (t 1) e t = max{, d t β LU t 1 } Total Lost Demand in period t : (LG t + LU t ) Needs a pretty good reformulation 16 Total Sales in period t : (e t LU t ) = d t (LG t + LU t ) 8

9 The AAC-GWL model: Loss of Customer Goodwill The intentional loss of demand in period t cannot exceed the effective demand of that period. LU t e t A logical constraint: e 1 d 1 A new inventory balance constraint in period t I t 1 X t (e t LU t ) I t 17 Indication of procurement activity in period t X t T r = t d y r t The AAC-GWL model: Loss of Customer Goodwill Lost goodwill effects of different number of loss periods Period Original Demand Effective Demand Satisfied Demand Lost Effective Demand Total Lost Demand May June 1, 1, July 3, 2, 2, 3, August 4, 2,7 2,7 1,2 May June July 3, 3, 3, 3, August 4, 2, 2, 1, 18

10 Solving the AAC-GWL model 13FRPSOHWH problem? An optimal procedure to solve? PROPOSAL Use the optimal procurement / loss schedule of the associated AAC model w/o goodwill considerations. Exhaustively Search and Restore the pseudo-optimality of that solution for the Goodwill Loss (GWL) case. Update the 1 st and 3 rd lemmae as follows (use Lemma 2 as is. ) Lemma 1. LU * t X * t = t {1, 2,, T} 1 Lemma 3. LU * t (e t LU * t )= t {1, 2,, T} Solving the AAC-GWL model Outline of the SEARCH-AND-RESTORATION Procedure From t = 1 towards t = T locate each (block of) loss period(s). Let t 1, t 2 denote such a period. When introduced, the goodwill loss hits the demand in period (t 2 +1) unless e t2 is zero. We either satisfy at least e t2 to prevent goodwill loss in period (t 2 +1) or lose at least LG t2 +1 therein. 2

11 Solving the AAC-GWL model Outline of the SEARCH-AND-RESTORATION Procedure Let periods u and q be the last production period preceding and the first such period following t 1, t 2, respectively. The solution space of handling loss periods t 1, t 2 is primarily characterized by these production periods There are four alternatives of meeting e t2. We choose the cheapest way of meeting e t2 and contrast it with 21 losing LG t2 +1 in period (t 2+1). Solving the AAC-GWL model Outline of the SEARCH-AND-RESTORATION Procedure Periods u and q which replace original production periods u and q. Original productions in u and q are entirely shifted to u and q. An extra production activity in some other period u. X u X q L t1 > L t1+1 > L t2 > L u = L u+1 = u u+1 = t 1 t 1 +1 t 2 q d u d u+1 I u 1 = I u > d t1 d t1+1 d dt2 t2+1 d d q+1 q I q > I q 1 = 22 11

12 Solving the AAC-GWL model Mutually exclusive and exhaustive cases of meeting the effective demand in t 2 Case 1 u = u Case 2 Case 4 t 1 u t u+1 q t 2 2 Case 3 u < u < t 1 23 Solving the AAC-GWL model Mutually exclusive and exhaustive cases of losing the effective demand in t 2 Case 1 q = q Case 3 X q = 24 Case 2 (q+1) q r The first regeneration period following q 12

13 A Numerical Example Data of the sample lot-sizing problem with lost goodwill Period t Demand Production Cost Holding Cost Selling Price Setup Cost 2 A Numerical Example solved β = % Period t Profit Π Optimal Solution w/o Goodwill Loss X t e t $1,68 L t (total) 12 Solution with Goodwill Loss X t e t $1,31 L t (total) Actual Optimal Solution with Goodwill Loss X t e t L t (total) $1,64 13

14 Remarks on AA-SR Heuristic Runs in O(T 2 ) CPU time with O(T 2 ) memory storage. Preprocessing via the O(T 2 ) algorithm AAC Insignificant rise in the CPU time of the AAC algorithm. Though NOT OPTIMAL! How come? Proof by a Counterexample PRESTO! 27 Questions & comments? 28 14

Supply Chains: Planning with Dynamic Demand

Supply Chains: Planning with Dynamic Demand Department of Industrial Engineering Supply Chains: Planning with Dynamic Demand Jayant Rajgopal, Ph.D., P.E. Department of Industrial Engineering University of Pittsburgh Pittsburgh, PA 15261 PRODUCTION

More information

1. (18 pts) D = 5000/yr, C = 600/unit, 1 year = 300 days, i = 0.06, A = 300 Current ordering amount Q = 200

1. (18 pts) D = 5000/yr, C = 600/unit, 1 year = 300 days, i = 0.06, A = 300 Current ordering amount Q = 200 HW 1 Solution 1. (18 pts) D = 5000/yr, C = 600/unit, 1 year = 300 days, i = 0.06, A = 300 Current ordering amount Q = 200 (a) T * = (b) Total(Holding + Setup) cost would be (c) The optimum cost would be

More information

A Dynamic Lot Size Model for Seasonal Products with Shipment Scheduling

A Dynamic Lot Size Model for Seasonal Products with Shipment Scheduling The 7th International Symposium on Operations Research and Its Applications (ISORA 08) Lijiang, China, October 31 Novemver 3, 2008 Copyright 2008 ORSC & APORC, pp. 303 310 A Dynamic Lot Size Model for

More information

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems

Handout 8: Introduction to Stochastic Dynamic Programming. 2 Examples of Stochastic Dynamic Programming Problems SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 8: Introduction to Stochastic Dynamic Programming Instructor: Shiqian Ma March 10, 2014 Suggested Reading: Chapter 1 of Bertsekas,

More information

Analyzing Pricing and Production Decisions with Capacity Constraints and Setup Costs

Analyzing Pricing and Production Decisions with Capacity Constraints and Setup Costs Erasmus University Rotterdam Bachelor Thesis Logistics Analyzing Pricing and Production Decisions with Capacity Constraints and Setup Costs Author: Bianca Doodeman Studentnumber: 359215 Supervisor: W.

More information

1 The EOQ and Extensions

1 The EOQ and Extensions IEOR4000: Production Management Lecture 2 Professor Guillermo Gallego September 16, 2003 Lecture Plan 1. The EOQ and Extensions 2. Multi-Item EOQ Model 1 The EOQ and Extensions We have explored some of

More information

,,, be any other strategy for selling items. It yields no more revenue than, based on the

,,, be any other strategy for selling items. It yields no more revenue than, based on the ONLINE SUPPLEMENT Appendix 1: Proofs for all Propositions and Corollaries Proof of Proposition 1 Proposition 1: For all 1,2,,, if, is a non-increasing function with respect to (henceforth referred to as

More information

Lecture Notes 1

Lecture Notes 1 4.45 Lecture Notes Guido Lorenzoni Fall 2009 A portfolio problem To set the stage, consider a simple nite horizon problem. A risk averse agent can invest in two assets: riskless asset (bond) pays gross

More information

Review. ESD.260 Fall 2003

Review. ESD.260 Fall 2003 Review ESD.260 Fall 2003 1 Demand Forecasting 2 Accuracy and Bias Measures 1. Forecast Error: e t = D t -F t 2. Mean Deviation: MD = 3. Mean Absolute Deviation 4. Mean Squared Error: 5. Root Mean Squared

More information

Correspondence should be addressed to Chih-Te Yang, Received 27 December 2008; Revised 22 June 2009; Accepted 19 August 2009

Correspondence should be addressed to Chih-Te Yang, Received 27 December 2008; Revised 22 June 2009; Accepted 19 August 2009 Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 2009, Article ID 198305, 18 pages doi:10.1155/2009/198305 Research Article Retailer s Optimal Pricing and Ordering Policies for

More information

Assortment Optimization Over Time

Assortment Optimization Over Time Assortment Optimization Over Time James M. Davis Huseyin Topaloglu David P. Williamson Abstract In this note, we introduce the problem of assortment optimization over time. In this problem, we have a sequence

More information

Handout 4: Deterministic Systems and the Shortest Path Problem

Handout 4: Deterministic Systems and the Shortest Path Problem SEEM 3470: Dynamic Optimization and Applications 2013 14 Second Term Handout 4: Deterministic Systems and the Shortest Path Problem Instructor: Shiqian Ma January 27, 2014 Suggested Reading: Bertsekas

More information

The Irrevocable Multi-Armed Bandit Problem

The Irrevocable Multi-Armed Bandit Problem The Irrevocable Multi-Armed Bandit Problem Ritesh Madan Qualcomm-Flarion Technologies May 27, 2009 Joint work with Vivek Farias (MIT) 2 Multi-Armed Bandit Problem n arms, where each arm i is a Markov Decision

More information

Forecast Horizons for Production Planning with Stochastic Demand

Forecast Horizons for Production Planning with Stochastic Demand Forecast Horizons for Production Planning with Stochastic Demand Alfredo Garcia and Robert L. Smith Department of Industrial and Operations Engineering Universityof Michigan, Ann Arbor MI 48109 December

More information

Competition under Time-Varying Demands and Dynamic Lot Sizing Costs

Competition under Time-Varying Demands and Dynamic Lot Sizing Costs Competition under Time-Varying Demands and Dynamic Lot Sizing Costs Awi Federgruen Columbia University Graduate School of Business Joern Meissner Lancaster University Management School Submitted June 2004,

More information

Integer Programming Models

Integer Programming Models Integer Programming Models Fabio Furini December 10, 2014 Integer Programming Models 1 Outline 1 Combinatorial Auctions 2 The Lockbox Problem 3 Constructing an Index Fund Integer Programming Models 2 Integer

More information

SOLVING ROBUST SUPPLY CHAIN PROBLEMS

SOLVING ROBUST SUPPLY CHAIN PROBLEMS SOLVING ROBUST SUPPLY CHAIN PROBLEMS Daniel Bienstock Nuri Sercan Özbay Columbia University, New York November 13, 2005 Project with Lucent Technologies Optimize the inventory buffer levels in a complicated

More information

Revenue Management Under the Markov Chain Choice Model

Revenue Management Under the Markov Chain Choice Model Revenue Management Under the Markov Chain Choice Model Jacob B. Feldman School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA jbf232@cornell.edu Huseyin

More information

All-or-Nothing Ordering under a Capacity Constraint and Forecasts of Stationary Demand

All-or-Nothing Ordering under a Capacity Constraint and Forecasts of Stationary Demand All-or-Nothing Ordering under a Capacity Constraint and Forecasts of Stationary Demand Guillermo Gallego IEOR Department, Columbia University 500 West 120th Street, New York, NY 10027, USA and L. Beril

More information

A Formal Study of Distributed Resource Allocation Strategies in Multi-Agent Systems

A Formal Study of Distributed Resource Allocation Strategies in Multi-Agent Systems A Formal Study of Distributed Resource Allocation Strategies in Multi-Agent Systems Jiaying Shen, Micah Adler, Victor Lesser Department of Computer Science University of Massachusetts Amherst, MA 13 Abstract

More information

Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information

Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information Optimal Inventory Policies with Non-stationary Supply Disruptions and Advance Supply Information Bilge Atasoy (TRANSP-OR, EPFL) with Refik Güllü (Boğaziçi University) and Tarkan Tan (TU/e) July 11, 2011

More information

Online Appendix: Extensions

Online Appendix: Extensions B Online Appendix: Extensions In this online appendix we demonstrate that many important variations of the exact cost-basis LUL framework remain tractable. In particular, dual problem instances corresponding

More information

MYOPIC INVENTORY POLICIES USING INDIVIDUAL CUSTOMER ARRIVAL INFORMATION

MYOPIC INVENTORY POLICIES USING INDIVIDUAL CUSTOMER ARRIVAL INFORMATION Working Paper WP no 719 November, 2007 MYOPIC INVENTORY POLICIES USING INDIVIDUAL CUSTOMER ARRIVAL INFORMATION Víctor Martínez de Albéniz 1 Alejandro Lago 1 1 Professor, Operations Management and Technology,

More information

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming

Dynamic Programming: An overview. 1 Preliminaries: The basic principle underlying dynamic programming Dynamic Programming: An overview These notes summarize some key properties of the Dynamic Programming principle to optimize a function or cost that depends on an interval or stages. This plays a key role

More information

Essays on Some Combinatorial Optimization Problems with Interval Data

Essays on Some Combinatorial Optimization Problems with Interval Data Essays on Some Combinatorial Optimization Problems with Interval Data a thesis submitted to the department of industrial engineering and the institute of engineering and sciences of bilkent university

More information

Pricing Problems under the Markov Chain Choice Model

Pricing Problems under the Markov Chain Choice Model Pricing Problems under the Markov Chain Choice Model James Dong School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853, USA jd748@cornell.edu A. Serdar Simsek

More information

A Markov decision model for optimising economic production lot size under stochastic demand

A Markov decision model for optimising economic production lot size under stochastic demand Volume 26 (1) pp. 45 52 http://www.orssa.org.za ORiON IN 0529-191-X c 2010 A Markov decision model for optimising economic production lot size under stochastic demand Paul Kizito Mubiru Received: 2 October

More information

JOINT PRODUCTION AND ECONOMIC RETENTION QUANTITY DECISIONS IN CAPACITATED PRODUCTION SYSTEMS SERVING MULTIPLE MARKET SEGMENTS.

JOINT PRODUCTION AND ECONOMIC RETENTION QUANTITY DECISIONS IN CAPACITATED PRODUCTION SYSTEMS SERVING MULTIPLE MARKET SEGMENTS. JOINT PRODUCTION AND ECONOMIC RETENTION QUANTITY DECISIONS IN CAPACITATED PRODUCTION SYSTEMS SERVING MULTIPLE MARKET SEGMENTS A Thesis by ABHILASHA KATARIYA Submitted to the Office of Graduate Studies

More information

1 The Solow Growth Model

1 The Solow Growth Model 1 The Solow Growth Model The Solow growth model is constructed around 3 building blocks: 1. The aggregate production function: = ( ()) which it is assumed to satisfy a series of technical conditions: (a)

More information

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein

Reinforcement Learning. Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Slides based on those used in Berkeley's AI class taught by Dan Klein Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the

More information

A PRODUCTION MODEL FOR A FLEXIBLE PRODUCTION SYSTEM AND PRODUCTS WITH SHORT SELLING SEASON

A PRODUCTION MODEL FOR A FLEXIBLE PRODUCTION SYSTEM AND PRODUCTS WITH SHORT SELLING SEASON A PRODUCTION MODEL FOR A FLEXIBLE PRODUCTION SYSTEM AND PRODUCTS WITH SHORT SELLING SEASON MOUTAZ KHOUJA AND ABRAHAM MEHREZ Received 12 June 2004 We address a practical problem faced by many firms. The

More information

A capital ow-constrained lot-sizing problem with trade credit

A capital ow-constrained lot-sizing problem with trade credit Scientia Iranica E (2018) 25(5), 2775{2787 Sharif University of Technology Scientia Iranica Transactions E: Industrial Engineering http://scientiairanica.sharif.edu A capital ow-constrained lot-sizing

More information

Markov Decision Processes II

Markov Decision Processes II Markov Decision Processes II Daisuke Oyama Topics in Economic Theory December 17, 2014 Review Finite state space S, finite action space A. The value of a policy σ A S : v σ = β t Q t σr σ, t=0 which satisfies

More information

Single-Parameter Mechanisms

Single-Parameter Mechanisms Algorithmic Game Theory, Summer 25 Single-Parameter Mechanisms Lecture 9 (6 pages) Instructor: Xiaohui Bei In the previous lecture, we learned basic concepts about mechanism design. The goal in this area

More information

EE266 Homework 5 Solutions

EE266 Homework 5 Solutions EE, Spring 15-1 Professor S. Lall EE Homework 5 Solutions 1. A refined inventory model. In this problem we consider an inventory model that is more refined than the one you ve seen in the lectures. The

More information

EOQ models for deteriorating items with two levels of market

EOQ models for deteriorating items with two levels of market Ryerson University Digital Commons @ Ryerson Theses and dissertations 1-1-211 EOQ models for deteriorating items with two levels of market Suborna Paul Ryerson University Follow this and additional works

More information

Lecture 17: More on Markov Decision Processes. Reinforcement learning

Lecture 17: More on Markov Decision Processes. Reinforcement learning Lecture 17: More on Markov Decision Processes. Reinforcement learning Learning a model: maximum likelihood Learning a value function directly Monte Carlo Temporal-difference (TD) learning COMP-424, Lecture

More information

Reinforcement Learning

Reinforcement Learning Reinforcement Learning Basic idea: Receive feedback in the form of rewards Agent s utility is defined by the reward function Must (learn to) act so as to maximize expected rewards Grid World The agent

More information

EOQ Model for Weibull Deteriorating Items with Imperfect Quality, Shortages and Time Varying Holding Cost Under Permissable Delay in Payments

EOQ Model for Weibull Deteriorating Items with Imperfect Quality, Shortages and Time Varying Holding Cost Under Permissable Delay in Payments International Journal of Computational Science and Mathematics. ISSN 0974-389 Volume 5, Number (03), pp. -3 International Research Publication House http://www.irphouse.com EOQ Model for Weibull Deteriorating

More information

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE

6.231 DYNAMIC PROGRAMMING LECTURE 3 LECTURE OUTLINE 6.21 DYNAMIC PROGRAMMING LECTURE LECTURE OUTLINE Deterministic finite-state DP problems Backward shortest path algorithm Forward shortest path algorithm Shortest path examples Alternative shortest path

More information

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later

Sensitivity Analysis with Data Tables. 10% annual interest now =$110 one year later. 10% annual interest now =$121 one year later Sensitivity Analysis with Data Tables Time Value of Money: A Special kind of Trade-Off: $100 @ 10% annual interest now =$110 one year later $110 @ 10% annual interest now =$121 one year later $100 @ 10%

More information

STUDIES ON INVENTORY MODEL FOR DETERIORATING ITEMS WITH WEIBULL REPLENISHMENT AND GENERALIZED PARETO DECAY HAVING SELLING PRICE DEPENDENT DEMAND

STUDIES ON INVENTORY MODEL FOR DETERIORATING ITEMS WITH WEIBULL REPLENISHMENT AND GENERALIZED PARETO DECAY HAVING SELLING PRICE DEPENDENT DEMAND International Journal of Education & Applied Sciences Research (IJEASR) ISSN: 2349 2899 (Online) ISSN: 2349 4808 (Print) Available online at: http://www.arseam.com Instructions for authors and subscription

More information

Lecture 7: Bayesian approach to MAB - Gittins index

Lecture 7: Bayesian approach to MAB - Gittins index Advanced Topics in Machine Learning and Algorithmic Game Theory Lecture 7: Bayesian approach to MAB - Gittins index Lecturer: Yishay Mansour Scribe: Mariano Schain 7.1 Introduction In the Bayesian approach

More information

Lecture outline W.B. Powell 1

Lecture outline W.B. Powell 1 Lecture outline Applications of the newsvendor problem The newsvendor problem Estimating the distribution and censored demands The newsvendor problem and risk The newsvendor problem with an unknown distribution

More information

Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11)

Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11) Jeremy Tejada ISE 441 - Introduction to Simulation Learning Outcomes: Lesson Plan for Simulation with Spreadsheets (8/31/11 & 9/7/11) 1. Students will be able to list and define the different components

More information

Chapter 21. Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION

Chapter 21. Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION Chapter 21 Dynamic Programming CONTENTS 21.1 A SHORTEST-ROUTE PROBLEM 21.2 DYNAMIC PROGRAMMING NOTATION 21.3 THE KNAPSACK PROBLEM 21.4 A PRODUCTION AND INVENTORY CONTROL PROBLEM 23_ch21_ptg01_Web.indd

More information

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g))

Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Problem Set 2: Ramsey s Growth Model (Solution Ex. 2.1 (f) and (g)) Exercise 2.1: An infinite horizon problem with perfect foresight In this exercise we will study at a discrete-time version of Ramsey

More information

Dynamic - Cash Flow Based - Inventory Management

Dynamic - Cash Flow Based - Inventory Management INFORMS Applied Probability Society Conference 2013 -Costa Rica Meeting Dynamic - Cash Flow Based - Inventory Management Michael N. Katehakis Rutgers University July 15, 2013 Talk based on joint work with

More information

Lecture outline W.B.Powell 1

Lecture outline W.B.Powell 1 Lecture outline What is a policy? Policy function approximations (PFAs) Cost function approximations (CFAs) alue function approximations (FAs) Lookahead policies Finding good policies Optimizing continuous

More information

A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders

A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders A Simple Heuristic for Joint Inventory and Pricing Models with Lead Time and Backorders Fernando Bernstein 1 Yang Li 2 Kevin Shang 1 1 The Fuqua School of Business, Duke University, Durham, NC 27708-0120

More information

Sequential Decision Making

Sequential Decision Making Sequential Decision Making Dynamic programming Christos Dimitrakakis Intelligent Autonomous Systems, IvI, University of Amsterdam, The Netherlands March 18, 2008 Introduction Some examples Dynamic programming

More information

An Efficient Algorithm for Dynamic Pricing using a Graphical Representation

An Efficient Algorithm for Dynamic Pricing using a Graphical Representation An Efficient Algorithm for Dynamic Pricing using a Graphical Representation Maxime C. Cohen Google Research, New York, NY 10011, maxccohen@google.com Swati Gupta Massachusetts Institute of Technology,

More information

OPTIMAL PRICING AND PRODUCTION POLICIES OF A MAKE-TO-STOCK SYSTEM WITH FLUCTUATING DEMAND

OPTIMAL PRICING AND PRODUCTION POLICIES OF A MAKE-TO-STOCK SYSTEM WITH FLUCTUATING DEMAND Probability in the Engineering and Informational Sciences, 23, 2009, 205 230. Printed in the U.S.A. doi:10.1017/s026996480900014x OPTIMAL PRICING AND PRODUCTION POLICIES OF A MAKE-TO-STOCK SYSTEM WITH

More information

TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY

TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY TWO-STAGE NEWSBOY MODEL WITH BACKORDERS AND INITIAL INVENTORY Ali Cheaitou, Christian van Delft, Yves Dallery and Zied Jemai Laboratoire Génie Industriel, Ecole Centrale Paris, Grande Voie des Vignes,

More information

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing

Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Optimal Search for Parameters in Monte Carlo Simulation for Derivative Pricing Prof. Chuan-Ju Wang Department of Computer Science University of Taipei Joint work with Prof. Ming-Yang Kao March 28, 2014

More information

Optimization Methods. Lecture 16: Dynamic Programming

Optimization Methods. Lecture 16: Dynamic Programming 15.093 Optimization Methods Lecture 16: Dynamic Programming 1 Outline 1. The knapsack problem Slide 1. The traveling salesman problem 3. The general DP framework 4. Bellman equation 5. Optimal inventory

More information

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 The Gradient Descent Algorithm. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 9 February 24th Overview In the previous lecture we reviewed results from multivariate calculus in preparation for our journey into convex

More information

Stochastic Optimal Control

Stochastic Optimal Control Stochastic Optimal Control Lecturer: Eilyan Bitar, Cornell ECE Scribe: Kevin Kircher, Cornell MAE These notes summarize some of the material from ECE 5555 (Stochastic Systems) at Cornell in the fall of

More information

Multi-armed bandits in dynamic pricing

Multi-armed bandits in dynamic pricing Multi-armed bandits in dynamic pricing Arnoud den Boer University of Twente, Centrum Wiskunde & Informatica Amsterdam Lancaster, January 11, 2016 Dynamic pricing A firm sells a product, with abundant inventory,

More information

4 Reinforcement Learning Basic Algorithms

4 Reinforcement Learning Basic Algorithms Learning in Complex Systems Spring 2011 Lecture Notes Nahum Shimkin 4 Reinforcement Learning Basic Algorithms 4.1 Introduction RL methods essentially deal with the solution of (optimal) control problems

More information

MATH 425: BINOMIAL TREES

MATH 425: BINOMIAL TREES MATH 425: BINOMIAL TREES G. BERKOLAIKO Summary. These notes will discuss: 1-level binomial tree for a call, fair price and the hedging procedure 1-level binomial tree for a general derivative, fair price

More information

OPTIMAL ADVANCE SCHEDULING. Van-Anh Truong Columbia University March 28, 2014

OPTIMAL ADVANCE SCHEDULING. Van-Anh Truong Columbia University March 28, 2014 OPTIMAL ADVANCE SCHEDULING Van-Anh Truong Columbia University March 28, 2014 Morgan Stanley Children s Hospital Children s hospital of New York-Presbyterian Academic hospital system of Columbia University

More information

Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models

Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models Provably Near-Optimal Balancing Policies for Multi-Echelon Stochastic Inventory Control Models Retsef Levi Robin Roundy Van Anh Truong February 13, 2006 Abstract We develop the first algorithmic approach

More information

Operations Management I Fall 2001 Faculty of Business Administration University of Windsor

Operations Management I Fall 2001 Faculty of Business Administration University of Windsor Name (print, please) ID Operations Management I 7- Fall 00 Faculty of Business Administration University of Windsor Midterm Exam II Solution Wednesday, November, 5:0 6:50 pm Instructor: Mohammed Fazle

More information

A Newsvendor Model with Initial Inventory and Two Salvage Opportunities

A Newsvendor Model with Initial Inventory and Two Salvage Opportunities A Newsvendor Model with Initial Inventory and Two Salvage Opportunities Ali CHEAITOU Euromed Management Marseille, 13288, France Christian VAN DELFT HEC School of Management, Paris (GREGHEC) Jouys-en-Josas,

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Markov Decision Processes Dan Klein, Pieter Abbeel University of California, Berkeley Non-Deterministic Search 1 Example: Grid World A maze-like problem The agent lives

More information

Online Algorithms SS 2013

Online Algorithms SS 2013 Faculty of Computer Science, Electrical Engineering and Mathematics Algorithms and Complexity research group Jun.-Prof. Dr. Alexander Skopalik Online Algorithms SS 2013 Summary of the lecture by Vanessa

More information

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization

Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1 of 6 Continuing Education Course #287 Engineering Methods in Microsoft Excel Part 2: Applied Optimization 1. Which of the following is NOT an element of an optimization formulation? a. Objective function

More information

Dynamic Programming and Reinforcement Learning

Dynamic Programming and Reinforcement Learning Dynamic Programming and Reinforcement Learning Daniel Russo Columbia Business School Decision Risk and Operations Division Fall, 2017 Daniel Russo (Columbia) Fall 2017 1 / 34 Supervised Machine Learning

More information

IEOR E4004: Introduction to OR: Deterministic Models

IEOR E4004: Introduction to OR: Deterministic Models IEOR E4004: Introduction to OR: Deterministic Models 1 Dynamic Programming Following is a summary of the problems we discussed in class. (We do not include the discussion on the container problem or the

More information

Optimal Long-Term Supply Contracts with Asymmetric Demand Information. Appendix

Optimal Long-Term Supply Contracts with Asymmetric Demand Information. Appendix Optimal Long-Term Supply Contracts with Asymmetric Demand Information Ilan Lobel Appendix Wenqiang iao {ilobel, wxiao}@stern.nyu.edu Stern School of Business, New York University Appendix A: Proofs Proof

More information

Multi-period mean variance asset allocation: Is it bad to win the lottery?

Multi-period mean variance asset allocation: Is it bad to win the lottery? Multi-period mean variance asset allocation: Is it bad to win the lottery? Peter Forsyth 1 D.M. Dang 1 1 Cheriton School of Computer Science University of Waterloo Guangzhou, July 28, 2014 1 / 29 The Basic

More information

E-companion to Coordinating Inventory Control and Pricing Strategies for Perishable Products

E-companion to Coordinating Inventory Control and Pricing Strategies for Perishable Products E-companion to Coordinating Inventory Control and Pricing Strategies for Perishable Products Xin Chen International Center of Management Science and Engineering Nanjing University, Nanjing 210093, China,

More information

EE365: Risk Averse Control

EE365: Risk Averse Control EE365: Risk Averse Control Risk averse optimization Exponential risk aversion Risk averse control 1 Outline Risk averse optimization Exponential risk aversion Risk averse control Risk averse optimization

More information

Online Network Revenue Management using Thompson Sampling

Online Network Revenue Management using Thompson Sampling Online Network Revenue Management using Thompson Sampling Kris Johnson Ferreira David Simchi-Levi He Wang Working Paper 16-031 Online Network Revenue Management using Thompson Sampling Kris Johnson Ferreira

More information

Dynamic Pricing with Varying Cost

Dynamic Pricing with Varying Cost Dynamic Pricing with Varying Cost L. Jeff Hong College of Business City University of Hong Kong Joint work with Ying Zhong and Guangwu Liu Outline 1 Introduction 2 Problem Formulation 3 Pricing Policy

More information

1 Online Problem Examples

1 Online Problem Examples Comp 260: Advanced Algorithms Tufts University, Spring 2018 Prof. Lenore Cowen Scribe: Isaiah Mindich Lecture 9: Online Algorithms All of the algorithms we have studied so far operate on the assumption

More information

Production Management Winter 2002 Odette School of Business University of Windsor. Midterm Exam 2 Solution Tuesday, March 26, 7:00 9:00 pm

Production Management Winter 2002 Odette School of Business University of Windsor. Midterm Exam 2 Solution Tuesday, March 26, 7:00 9:00 pm Name (print, please) ID Production Management 7-604 Winter 00 Odette School of Business University of Windsor Midterm Exam Solution Tuesday, March 6, 7:00 9:00 pm Instructor: Mohammed Fazle Baki Aids Permitted:

More information

Optimal routing and placement of orders in limit order markets

Optimal routing and placement of orders in limit order markets Optimal routing and placement of orders in limit order markets Rama CONT Arseniy KUKANOV Imperial College London Columbia University New York CFEM-GARP Joint Event and Seminar 05/01/13, New York Choices,

More information

Optimal Multi-Period Pricing with Service Guarantees

Optimal Multi-Period Pricing with Service Guarantees Optimal Multi-Period Pricing with Service Guarantees Christian Borgs 1, Ozan Candogan 2, Jennifer Chayes 3, Ilan Lobel 4 and Hamid Nazerzadeh 5 Abstract: We study the multi-period pricing problem of a

More information

Portfolio Optimization using Conditional Sharpe Ratio

Portfolio Optimization using Conditional Sharpe Ratio International Letters of Chemistry, Physics and Astronomy Online: 2015-07-01 ISSN: 2299-3843, Vol. 53, pp 130-136 doi:10.18052/www.scipress.com/ilcpa.53.130 2015 SciPress Ltd., Switzerland Portfolio Optimization

More information

Game theory for. Leonardo Badia.

Game theory for. Leonardo Badia. Game theory for information engineering Leonardo Badia leonardo.badia@gmail.com Zero-sum games A special class of games, easier to solve Zero-sum We speak of zero-sum game if u i (s) = -u -i (s). player

More information

Multi-armed bandit problems

Multi-armed bandit problems Multi-armed bandit problems Stochastic Decision Theory (2WB12) Arnoud den Boer 13 March 2013 Set-up 13 and 14 March: Lectures. 20 and 21 March: Paper presentations (Four groups, 45 min per group). Before

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Robert Platt Northeastern University Some images and slides are used from: 1. CS188 UC Berkeley 2. AIMA 3. Chris Amato Stochastic domains So far, we have studied search Can use

More information

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE

THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE THE TRAVELING SALESMAN PROBLEM FOR MOVING POINTS ON A LINE GÜNTER ROTE Abstract. A salesperson wants to visit each of n objects that move on a line at given constant speeds in the shortest possible time,

More information

University of Groningen. Inventory Control for Multi-location Rental Systems van der Heide, Gerlach

University of Groningen. Inventory Control for Multi-location Rental Systems van der Heide, Gerlach University of Groningen Inventory Control for Multi-location Rental Systems van der Heide, Gerlach IMPORTANT NOTE: You are advised to consult the publisher's version publisher's PDF) if you wish to cite

More information

BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security

BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security BSc (Hons) Software Engineering BSc (Hons) Computer Science with Network Security Cohorts BCNS/ 06 / Full Time & BSE/ 06 / Full Time Resit Examinations for 2008-2009 / Semester 1 Examinations for 2008-2009

More information

Infinite Horizon Optimal Policy for an Inventory System with Two Types of Products sharing Common Hardware Platforms

Infinite Horizon Optimal Policy for an Inventory System with Two Types of Products sharing Common Hardware Platforms Infinite Horizon Optimal Policy for an Inventory System with Two Types of Products sharing Common Hardware Platforms Mabel C. Chou, Chee-Khian Sim, Xue-Ming Yuan October 19, 2016 Abstract We consider a

More information

Pricing Policy with Time and Price Dependent Demand for Deteriorating Items

Pricing Policy with Time and Price Dependent Demand for Deteriorating Items EUROPEAN JOURNAL OF MATHEMATICAL SCIENCES Vol., No. 3, 013, 341-351 ISSN 147-551 www.ejmathsci.com Pricing Policy with Time and Price Dependent Demand for Deteriorating Items Uttam Kumar Khedlekar, Diwakar

More information

Column generation to solve planning problems

Column generation to solve planning problems Column generation to solve planning problems ALGORITMe Han Hoogeveen 1 Continuous Knapsack problem We are given n items with integral weight a j ; integral value c j. B is a given integer. Goal: Find a

More information

Auctions That Implement Efficient Investments

Auctions That Implement Efficient Investments Auctions That Implement Efficient Investments Kentaro Tomoeda October 31, 215 Abstract This article analyzes the implementability of efficient investments for two commonly used mechanisms in single-item

More information

Roll No. :... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/ OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES

Roll No. :... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/ OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES Name : Roll No. :.... Invigilator s Signature :.. CS/B.TECH(IT)/SEM-5/M(CS)-511/2011-12 2011 OPERATIONS RESEARCH AND OPTIMIZATION TECHNIQUES Time Allotted : 3 Hours Full Marks : 70 The figures in the margin

More information

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes.

CS 188 Fall Introduction to Artificial Intelligence Midterm 1. ˆ You have approximately 2 hours and 50 minutes. CS 188 Fall 2013 Introduction to Artificial Intelligence Midterm 1 ˆ You have approximately 2 hours and 50 minutes. ˆ The exam is closed book, closed notes except your one-page crib sheet. ˆ Please use

More information

Homework solutions, Chapter 8

Homework solutions, Chapter 8 Homework solutions, Chapter 8 NOTE: We might think of 8.1 as being a section devoted to setting up the networks and 8.2 as solving them, but only 8.2 has a homework section. Section 8.2 2. Use Dijkstra

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration Piyush Rai CS5350/6350: Machine Learning November 29, 2011 Reinforcement Learning Supervised Learning: Uses explicit supervision

More information

Non-Deterministic Search

Non-Deterministic Search Non-Deterministic Search MDP s 1 Non-Deterministic Search How do you plan (search) when your actions might fail? In general case, how do you plan, when the actions have multiple possible outcomes? 2 Example:

More information

Chapter 6 Analyzing Accumulated Change: Integrals in Action

Chapter 6 Analyzing Accumulated Change: Integrals in Action Chapter 6 Analyzing Accumulated Change: Integrals in Action 6. Streams in Business and Biology You will find Excel very helpful when dealing with streams that are accumulated over finite intervals. Finding

More information

ROBUST OPTIMIZATION OF MULTI-PERIOD PRODUCTION PLANNING UNDER DEMAND UNCERTAINTY. A. Ben-Tal, B. Golany and M. Rozenblit

ROBUST OPTIMIZATION OF MULTI-PERIOD PRODUCTION PLANNING UNDER DEMAND UNCERTAINTY. A. Ben-Tal, B. Golany and M. Rozenblit ROBUST OPTIMIZATION OF MULTI-PERIOD PRODUCTION PLANNING UNDER DEMAND UNCERTAINTY A. Ben-Tal, B. Golany and M. Rozenblit Faculty of Industrial Engineering and Management, Technion, Haifa 32000, Israel ABSTRACT

More information

An Inventory Model for Deteriorating Items under Conditionally Permissible Delay in Payments Depending on the Order Quantity

An Inventory Model for Deteriorating Items under Conditionally Permissible Delay in Payments Depending on the Order Quantity Applied Mathematics, 04, 5, 675-695 Published Online October 04 in SciRes. http://www.scirp.org/journal/am http://dx.doi.org/0.436/am.04.5756 An Inventory Model for Deteriorating Items under Conditionally

More information