B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (3)

Size: px
Start display at page:

Download "B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (3)"

Transcription

1 B. Maddah INDE 504 Discrete-Event Simulation Output Analysis (3) Variance Reduction Variance reduction techniques (VRT) are methods to reduce the variance (i.e. increase precision) of simulation output without doing more runs. They are based on setting up the simulation in smart ways that benefit from correlations between different random variables to reduce variability. VRTs are not free though. E.g., some additional programming effort may be needed. The basic relation used in a VRT is 2 2 var( ax by) a var( X ) b var( Y) 2ab cov( X, Y). If the last term is negative than the variance of ax + by could be reduced. Recall that the sample covariance based on n observations of X and Y is cov( XY, ) n i 1 ( X X )( Y Y ) i n 1 i 1

2 Variance reduction using common random numbers (CRN) Thus is used when comparing the simulation outputs from two systems. The idea is to use the same stream of random numbers to compare both systems. Intuitively, this is equivalent to comparing the two systems under similar conditions. Suppose that n iid observations are available from the output of each system, X 11, X 12,, X 1n, and X 21, X 22,, X 2n. Consider the paired difference Z j = X 1j X 2j, j = 1,, n. Then, var( Z ) var( X ) var( X ) 2cov( X, X ) j 1 j 2 j 1 j 2 j This implies var(z j ) is reduced if X 1j and X 2j are positively correlated (i.e. cov(x 1j, X 1j ) > 0). This can be achieved by using the same stream of random number to estimate X 1j and X 1j. One critical point is synchronization. That is, using random numbers for the same purpose in both simulations. One way to achieve this is to use dedicated streams for each source of randomness (e.g. one for arrival times and one for service times.) 2

3 In addition, using a random variates generation method which uses 1 U(0,1) to get 1 variate X and which uses a monotone transformation U X helps in synchronization. The inverse transform method is highly desired here. CRM works well if the two systems under comparison react in a similar way to changes in the underlying random number streams. If not, we could get cov(x 1, X 2 ) < 0 and the method bacfires. Example 5 CRN was applied to the comparing the two ATM configurations in Example 1 based on 100 replications. CRN was applied in different ways by synchronizing arrival times only (A), service times only (S), and both arrival and service times. The results were as follows. (I means no synchronization e.g. using one random number stream for all purposes.) 3

4 Variance reduction using antithetic variates (AV) This method is used for variance reduction of a single system (in order to get a more precise output). Like CRN, AV works by recycling random numbers. The idea is to run replication j based on pairs of two replications. One replication, uses random numbers U j1, U j2,, U jm to estimate a measure of performance X (1) j, and the other run uses random numbers 1 U j1, 1 U j2,, 1 U jm, to estimate a similar measure X (2) j. Then, use X j = (X (1) j + X (2) j )/2 as the output of replication j. The use of U and (1 U) is sought to induce negative correlation between X (1) j and X (2) j. Then, the variance of X j is less than the variance of X (1) j and X (2) j since var(x j ) = [var(x (1) j ) + var(x (2) j ) + 2 cov(x (1) j, X (2) j )] / 4. The intuition behind AV is that counterbalancing a large observation with a small one leads somewhere close to the mean. Note that AV requires synchronization like CRN so that U and 1 U for the same purpose. 4

5 Variance reduction using control variates (CV) This method works by relating the random variable of interest, X, (for which we wish to estimate the mean) to another random variable with known mean, Y. E.g, in a queueing simulation, X could be the delay time and Y the service time. The idea is to use our knowledge of E[Y] = v to control X when X and Y are correlated. Specifically, define X C = X a(y v), Then, E[X C ] = E[X]. The choice of a can be made in a way that minimizes var[x C ]. Note that var[x C ] = var[x] + a 2 var[y] 2acov(X,Y). This is a second degree polynomial in a whose minimum is a* = cov(x, Y)/var[Y]. The issue now is how to estimate cov(x, Y) or even var[y]. This can often be only done through sample data, which tends to bias the estimation of E[X] through E[X C ]. 5

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book.

Introduction Dickey-Fuller Test Option Pricing Bootstrapping. Simulation Methods. Chapter 13 of Chris Brook s Book. Simulation Methods Chapter 13 of Chris Brook s Book Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 April 26, 2017 Christopher

More information

Brooks, Introductory Econometrics for Finance, 3rd Edition

Brooks, Introductory Econometrics for Finance, 3rd Edition P1.T2. Quantitative Analysis Brooks, Introductory Econometrics for Finance, 3rd Edition Bionic Turtle FRM Study Notes Sample By David Harper, CFA FRM CIPM and Deepa Raju www.bionicturtle.com Chris Brooks,

More information

Ch4. Variance Reduction Techniques

Ch4. Variance Reduction Techniques Ch4. Zhang Jin-Ting Department of Statistics and Applied Probability July 17, 2012 Ch4. Outline Ch4. This chapter aims to improve the Monte Carlo Integration estimator via reducing its variance using some

More information

3. Monte Carlo Simulation

3. Monte Carlo Simulation 3. Monte Carlo Simulation 3.7 Variance Reduction Techniques Math443 W08, HM Zhu Variance Reduction Procedures (Chap 4.5., 4.5.3, Brandimarte) Usually, a very large value of M is needed to estimate V with

More information

Week 7 Quantitative Analysis of Financial Markets Simulation Methods

Week 7 Quantitative Analysis of Financial Markets Simulation Methods Week 7 Quantitative Analysis of Financial Markets Simulation Methods Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 November

More information

V ar( X 1 + X 2. ) = ( V ar(x 1) + V ar(x 2 ) + 2 Cov(X 1, X 2 ) ),

V ar( X 1 + X 2. ) = ( V ar(x 1) + V ar(x 2 ) + 2 Cov(X 1, X 2 ) ), ANTITHETIC VARIABLES, CONTROL VARIATES Variance Reduction Background: the simulation error estimates for some parameter θ X, depend on V ar( X) = V ar(x)/n, so the simulation can be more efficient if V

More information

Gamma. The finite-difference formula for gamma is

Gamma. The finite-difference formula for gamma is Gamma The finite-difference formula for gamma is [ P (S + ɛ) 2 P (S) + P (S ɛ) e rτ E ɛ 2 ]. For a correlation option with multiple underlying assets, the finite-difference formula for the cross gammas

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

15.063: Communicating with Data Summer Recitation 3 Probability II

15.063: Communicating with Data Summer Recitation 3 Probability II 15.063: Communicating with Data Summer 2003 Recitation 3 Probability II Today s Goal Binomial Random Variables (RV) Covariance and Correlation Sums of RV Normal RV 15.063, Summer '03 2 Random Variables

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

ERM (Part 1) Measurement and Modeling of Depedencies in Economic Capital. PAK Study Manual

ERM (Part 1) Measurement and Modeling of Depedencies in Economic Capital. PAK Study Manual ERM-101-12 (Part 1) Measurement and Modeling of Depedencies in Economic Capital Related Learning Objectives 2b) Evaluate how risks are correlated, and give examples of risks that are positively correlated

More information

Business Statistics 41000: Probability 3

Business Statistics 41000: Probability 3 Business Statistics 41000: Probability 3 Drew D. Creal University of Chicago, Booth School of Business February 7 and 8, 2014 1 Class information Drew D. Creal Email: dcreal@chicagobooth.edu Office: 404

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

Lecture 3: Return vs Risk: Mean-Variance Analysis

Lecture 3: Return vs Risk: Mean-Variance Analysis Lecture 3: Return vs Risk: Mean-Variance Analysis 3.1 Basics We will discuss an important trade-off between return (or reward) as measured by expected return or mean of the return and risk as measured

More information

Output Analysis for Simulations

Output Analysis for Simulations Output Analysis for Simulations Yu Wang Dept of Industrial Engineering University of Pittsburgh Feb 16, 2009 Why output analysis is needed Simulation includes randomness >> random output Statistical techniques

More information

Standard Normal, Inverse Normal and Sampling Distributions

Standard Normal, Inverse Normal and Sampling Distributions Standard Normal, Inverse Normal and Sampling Distributions Section 5.5 & 6.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy

More information

Lecture 4: Return vs Risk: Mean-Variance Analysis

Lecture 4: Return vs Risk: Mean-Variance Analysis Lecture 4: Return vs Risk: Mean-Variance Analysis 4.1 Basics Given a cool of many different stocks, you want to decide, for each stock in the pool, whether you include it in your portfolio and (if yes)

More information

Bias Reduction Using the Bootstrap

Bias Reduction Using the Bootstrap Bias Reduction Using the Bootstrap Find f t (i.e., t) so that or E(f t (P, P n ) P) = 0 E(T(P n ) θ(p) + t P) = 0. Change the problem to the sample: whose solution is so the bias-reduced estimate is E(T(P

More information

MSc in Financial Engineering

MSc in Financial Engineering Department of Economics, Mathematics and Statistics MSc in Financial Engineering On Numerical Methods for the Pricing of Commodity Spread Options Damien Deville September 11, 2009 Supervisor: Dr. Steve

More information

Test 7A AP Statistics Name: Directions: Work on these sheets.

Test 7A AP Statistics Name: Directions: Work on these sheets. Test 7A AP Statistics Name: Directions: Work on these sheets. Part 1: Multiple Choice. Circle the letter corresponding to the best answer. 1. Suppose X is a random variable with mean µ. Suppose we observe

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

Section 1.3: More Probability and Decisions: Linear Combinations and Continuous Random Variables

Section 1.3: More Probability and Decisions: Linear Combinations and Continuous Random Variables Section 1.3: More Probability and Decisions: Linear Combinations and Continuous Random Variables Jared S. Murray The University of Texas at Austin McCombs School of Business OpenIntro Statistics, Chapters

More information

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom

Review for Final Exam Spring 2014 Jeremy Orloff and Jonathan Bloom Review for Final Exam 18.05 Spring 2014 Jeremy Orloff and Jonathan Bloom THANK YOU!!!! JON!! PETER!! RUTHI!! ERIKA!! ALL OF YOU!!!! Probability Counting Sets Inclusion-exclusion principle Rule of product

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

University of California Berkeley

University of California Berkeley University of California Berkeley Improving the Asmussen-Kroese Type Simulation Estimators Samim Ghamami and Sheldon M. Ross May 25, 2012 Abstract Asmussen-Kroese [1] Monte Carlo estimators of P (S n >

More information

JDEP 384H: Numerical Methods in Business

JDEP 384H: Numerical Methods in Business Chapter 4: Numerical Integration: Deterministic and Monte Carlo Methods Chapter 8: Option Pricing by Monte Carlo Methods JDEP 384H: Numerical Methods in Business Instructor: Thomas Shores Department of

More information

Discrete probability distributions

Discrete probability distributions Discrete probability distributions Probability distributions Discrete random variables Expected values (mean) Variance Linear functions - mean & standard deviation Standard deviation 1 Probability distributions

More information

Bernoulli and Binomial Distributions

Bernoulli and Binomial Distributions Bernoulli and Binomial Distributions Bernoulli Distribution a flipped coin turns up either heads or tails an item on an assembly line is either defective or not defective a piece of fruit is either damaged

More information

Using Monte Carlo Integration and Control Variates to Estimate π

Using Monte Carlo Integration and Control Variates to Estimate π Using Monte Carlo Integration and Control Variates to Estimate π N. Cannady, P. Faciane, D. Miksa LSU July 9, 2009 Abstract We will demonstrate the utility of Monte Carlo integration by using this algorithm

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems

Interval estimation. September 29, Outline Basic ideas Sampling variation and CLT Interval estimation using X More general problems Interval estimation September 29, 2017 STAT 151 Class 7 Slide 1 Outline of Topics 1 Basic ideas 2 Sampling variation and CLT 3 Interval estimation using X 4 More general problems STAT 151 Class 7 Slide

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulating Stochastic Differential Equations Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Section 3.1: Discrete Event Simulation

Section 3.1: Discrete Event Simulation Section 3.1: Discrete Event Simulation Discrete-Event Simulation: A First Course c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation: A First Course Section 3.1: Discrete Event Simulation

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Chapter 5. Statistical inference for Parametric Models

Chapter 5. Statistical inference for Parametric Models Chapter 5. Statistical inference for Parametric Models Outline Overview Parameter estimation Method of moments How good are method of moments estimates? Interval estimation Statistical Inference for Parametric

More information

A general approach to calculating VaR without volatilities and correlations

A general approach to calculating VaR without volatilities and correlations page 19 A general approach to calculating VaR without volatilities and correlations Peter Benson * Peter Zangari Morgan Guaranty rust Company Risk Management Research (1-212) 648-8641 zangari_peter@jpmorgan.com

More information

Desirable properties for a good model of portfolio credit risk modelling

Desirable properties for a good model of portfolio credit risk modelling 3.3 Default correlation binomial models Desirable properties for a good model of portfolio credit risk modelling Default dependence produce default correlations of a realistic magnitude. Estimation number

More information

Simulation Wrap-up, Statistics COS 323

Simulation Wrap-up, Statistics COS 323 Simulation Wrap-up, Statistics COS 323 Today Simulation Re-cap Statistics Variance and confidence intervals for simulations Simulation wrap-up FYI: No class or office hours Thursday Simulation wrap-up

More information

UNIVERSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C. ON MONTE CARli) METHODS IN CONGESTION PROBLEMS

UNIVERSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C. ON MONTE CARli) METHODS IN CONGESTION PROBLEMS UNIVERSITY OF NORTH CAROLINA Department of Statistics Chapel Hill, N. C. ON MONTE CARli) METHODS IN CONGESTION PROBLEMS II. SIMULATION OF QUEUEING SYSTEMS by E. S. page February 1963 This research was

More information

For these techniques to be efficient, we need to use. M then we introduce techniques to reduce Var[Y ] while. Var[Y ]

For these techniques to be efficient, we need to use. M then we introduce techniques to reduce Var[Y ] while. Var[Y ] SPRING 2008, CSC KTH - Numerical methods for SDEs, Szepessy, Tempone 261 Variance reduction a Idea: Since the Monte Carlo Error is E[Y ] 1 M M j=1 Var[Y ] Y (ωj) Cα M then we introduce techniques to reduce

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

CS145: Probability & Computing

CS145: Probability & Computing CS145: Probability & Computing Lecture 8: Variance of Sums, Cumulative Distribution, Continuous Variables Instructor: Eli Upfal Brown University Computer Science Figure credits: Bertsekas & Tsitsiklis,

More information

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Investment Instruments: Theory and Computation

NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION Investment Instruments: Theory and Computation NATIONAL UNIVERSITY OF SINGAPORE DEPARTMENT OF MATHEMATICS SEMESTER 2 EXAMINATION 2012-2013 Investment Instruments: Theory and Computation April/May 2013 Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Monte Carlo Methods Mark Schmidt University of British Columbia Winter 2019 Last Time: Markov Chains We can use Markov chains for density estimation, d p(x) = p(x 1 ) p(x }{{}

More information

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh

F19: Introduction to Monte Carlo simulations. Ebrahim Shayesteh F19: Introduction to Monte Carlo simulations Ebrahim Shayesteh Introduction and repetition Agenda Monte Carlo methods: Background, Introduction, Motivation Example 1: Buffon s needle Simple Sampling Example

More information

Lecture 12: The Bootstrap

Lecture 12: The Bootstrap Lecture 12: The Bootstrap Reading: Chapter 5 STATS 202: Data mining and analysis October 20, 2017 1 / 16 Announcements Midterm is on Monday, Oct 30 Topics: chapters 1-5 and 10 of the book everything until

More information

Value at Risk Ch.12. PAK Study Manual

Value at Risk Ch.12. PAK Study Manual Value at Risk Ch.12 Related Learning Objectives 3a) Apply and construct risk metrics to quantify major types of risk exposure such as market risk, credit risk, liquidity risk, regulatory risk etc., and

More information

1 Asset Pricing: Replicating portfolios

1 Asset Pricing: Replicating portfolios Alberto Bisin Corporate Finance: Lecture Notes Class 1: Valuation updated November 17th, 2002 1 Asset Pricing: Replicating portfolios Consider an economy with two states of nature {s 1, s 2 } and with

More information

Section 0: Introduction and Review of Basic Concepts

Section 0: Introduction and Review of Basic Concepts Section 0: Introduction and Review of Basic Concepts Carlos M. Carvalho The University of Texas McCombs School of Business mccombs.utexas.edu/faculty/carlos.carvalho/teaching 1 Getting Started Syllabus

More information

Mean-Variance Portfolio Theory

Mean-Variance Portfolio Theory Mean-Variance Portfolio Theory Lakehead University Winter 2005 Outline Measures of Location Risk of a Single Asset Risk and Return of Financial Securities Risk of a Portfolio The Capital Asset Pricing

More information

The Experts In Actuarial Career Advancement. Product Preview. For More Information: or call 1(800)

The Experts In Actuarial Career Advancement. Product Preview. For More Information:  or call 1(800) P U B L I C A T I O N S The Experts In Actuarial Career Advancement Product Preview For More Information: email Support@ActexMadRiver.com or call 1(800) 282-2839 PL-1 Eric Brosius Loss Development Using

More information

Financial Mathematics III Theory summary

Financial Mathematics III Theory summary Financial Mathematics III Theory summary Table of Contents Lecture 1... 7 1. State the objective of modern portfolio theory... 7 2. Define the return of an asset... 7 3. How is expected return defined?...

More information

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by

As we saw in Chapter 12, one of the many uses of Monte Carlo simulation by Financial Modeling with Crystal Ball and Excel, Second Edition By John Charnes Copyright 2012 by John Charnes APPENDIX C Variance Reduction Techniques As we saw in Chapter 12, one of the many uses of Monte

More information

Risk and Return and Portfolio Theory

Risk and Return and Portfolio Theory Risk and Return and Portfolio Theory Intro: Last week we learned how to calculate cash flows, now we want to learn how to discount these cash flows. This will take the next several weeks. We know discount

More information

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling

Econ 250 Fall Due at November 16. Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling Econ 250 Fall 2010 Due at November 16 Assignment 2: Binomial Distribution, Continuous Random Variables and Sampling 1. Suppose a firm wishes to raise funds and there are a large number of independent financial

More information

General Notation. Return and Risk: The Capital Asset Pricing Model

General Notation. Return and Risk: The Capital Asset Pricing Model Return and Risk: The Capital Asset Pricing Model (Text reference: Chapter 10) Topics general notation single security statistics covariance and correlation return and risk for a portfolio diversification

More information

MONTE CARLO EXTENSIONS

MONTE CARLO EXTENSIONS MONTE CARLO EXTENSIONS School of Mathematics 2013 OUTLINE 1 REVIEW OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO OUTLINE 1 REVIEW 2 EXTENSION TO MONTE CARLO 3 SUMMARY MONTE CARLO SO FAR... Simple to program

More information

Homework 9 (for lectures on 4/2)

Homework 9 (for lectures on 4/2) Spring 2015 MTH122 Survey of Calculus and its Applications II Homework 9 (for lectures on 4/2) Yin Su 2015.4. Problems: 1. Suppose X, Y are discrete random variables with the following distributions: X

More information

Math 5760/6890 Introduction to Mathematical Finance

Math 5760/6890 Introduction to Mathematical Finance Math 5760/6890 Introduction to Mathematical Finance Instructor: Jingyi Zhu Office: LCB 335 Telephone:581-3236 E-mail: zhu@math.utah.edu Class web page: www.math.utah.edu/~zhu/5760_12f.html What you should

More information

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6.

STUDY SET 1. Discrete Probability Distributions. x P(x) and x = 6. STUDY SET 1 Discrete Probability Distributions 1. Consider the following probability distribution function. Compute the mean and standard deviation of. x 0 1 2 3 4 5 6 7 P(x) 0.05 0.16 0.19 0.24 0.18 0.11

More information

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables

Chapter 5. Continuous Random Variables and Probability Distributions. 5.1 Continuous Random Variables Chapter 5 Continuous Random Variables and Probability Distributions 5.1 Continuous Random Variables 1 2CHAPTER 5. CONTINUOUS RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS Probability Distributions Probability

More information

A First Course in Probability

A First Course in Probability A First Course in Probability Seventh Edition Sheldon Ross University of Southern California PEARSON Prentice Hall Upper Saddle River, New Jersey 07458 Preface 1 Combinatorial Analysis 1 1.1 Introduction

More information

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Algebra Module A33. Factoring - 2. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved. Algebra Module A33 Factoring - 2 Copyright This publication The Northern Alberta Institute of Technology 2002. All Rights Reserved. LAST REVISED November, 2008 Factoring - 2 Statement of Prerequisite

More information

Martingales, Part II, with Exercise Due 9/21

Martingales, Part II, with Exercise Due 9/21 Econ. 487a Fall 1998 C.Sims Martingales, Part II, with Exercise Due 9/21 1. Brownian Motion A process {X t } is a Brownian Motion if and only if i. it is a martingale, ii. t is a continuous time parameter

More information

Mathematics of Time Value

Mathematics of Time Value CHAPTER 8A Mathematics of Time Value The general expression for computing the present value of future cash flows is as follows: PV t C t (1 rt ) t (8.1A) This expression allows for variations in cash flows

More information

Chapter 16. Random Variables. Copyright 2010 Pearson Education, Inc.

Chapter 16. Random Variables. Copyright 2010 Pearson Education, Inc. Chapter 16 Random Variables Copyright 2010 Pearson Education, Inc. Expected Value: Center A random variable assumes a value based on the outcome of a random event. We use a capital letter, like X, to denote

More information

E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models.

E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models. 1 E&G, Ch. 8: Multi-Index Models & Grouping Techniques I. Multi-Index Models. A. The General Multi-Index Model: R i = a i + b i1 I 1 + b i2 I 2 + + b il I L + c i Explanation: 1. Let I 1 = R m ; I 2 =

More information

MTH6154 Financial Mathematics I Stochastic Interest Rates

MTH6154 Financial Mathematics I Stochastic Interest Rates MTH6154 Financial Mathematics I Stochastic Interest Rates Contents 4 Stochastic Interest Rates 45 4.1 Fixed Interest Rate Model............................ 45 4.2 Varying Interest Rate Model...........................

More information

A shortcut to sign Incremental Value-at-Risk for risk allocation

A shortcut to sign Incremental Value-at-Risk for risk allocation arxiv:cond-mat/0204593v2 [cond-mat.stat-mech] 12 Oct 2002 A shortcut to sign Incremental Value-at-Risk for risk allocation Dirk Tasche Luisa Tibiletti October 2, 2002 Abstract Approximate Incremental Value-at-Risk

More information

Transactions with Hidden Action: Part 1. Dr. Margaret Meyer Nuffield College

Transactions with Hidden Action: Part 1. Dr. Margaret Meyer Nuffield College Transactions with Hidden Action: Part 1 Dr. Margaret Meyer Nuffield College 2015 Transactions with hidden action A risk-neutral principal (P) delegates performance of a task to an agent (A) Key features

More information

CHAPTER 14 BOND PORTFOLIOS

CHAPTER 14 BOND PORTFOLIOS CHAPTER 14 BOND PORTFOLIOS Chapter Overview This chapter describes the international bond market and examines the return and risk properties of international bond portfolios from an investor s perspective.

More information

Estimating the Greeks

Estimating the Greeks IEOR E4703: Monte-Carlo Simulation Columbia University Estimating the Greeks c 207 by Martin Haugh In these lecture notes we discuss the use of Monte-Carlo simulation for the estimation of sensitivities

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 11 Output Analysis for a Single Model Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Objective: Estimate system performance via simulation If q is the system performance,

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Dr. Maddah ENMG 625 Financial Eng g II 11/09/06. Chapter 10 Forwards, Futures, and Swaps (2)

Dr. Maddah ENMG 625 Financial Eng g II 11/09/06. Chapter 10 Forwards, Futures, and Swaps (2) Dr. Maddah ENMG 625 Financial Eng g II 11/09/06 Chapter 10 Forwards, Futures, and Swaps (2) Swaps A swap is an agreement to exchange one cash flow stream for another. In a plain vanilla swap, one party

More information

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06

Dr. Maddah ENMG 625 Financial Eng g II 10/16/06 Dr. Maddah ENMG 65 Financial Eng g II 10/16/06 Chapter 11 Models of Asset Dynamics () Random Walk A random process, z, is an additive process defined over times t 0, t 1,, t k, t k+1,, such that z( t )

More information

John Paul Sommers, Agency for Health Care Policy and Research Executive Office Center, 2101 E. Jefferson St., Rockville, MD 20852

John Paul Sommers, Agency for Health Care Policy and Research Executive Office Center, 2101 E. Jefferson St., Rockville, MD 20852 VARIANCES FOR MODELS USING 'AGED' DATA John Paul Sommers, Agency for Health Care Policy and Research Executive Office Center, 2101 E. Jefferson St., Rockville, MD 20852 KEY WORDS: Microsimulation, Variances

More information

Annual risk measures and related statistics

Annual risk measures and related statistics Annual risk measures and related statistics Arno E. Weber, CIPM Applied paper No. 2017-01 August 2017 Annual risk measures and related statistics Arno E. Weber, CIPM 1,2 Applied paper No. 2017-01 August

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions

Economics 430 Handout on Rational Expectations: Part I. Review of Statistics: Notation and Definitions Economics 430 Chris Georges Handout on Rational Expectations: Part I Review of Statistics: Notation and Definitions Consider two random variables X and Y defined over m distinct possible events. Event

More information

Overview. We will discuss the nature of market risk and appropriate measures

Overview. We will discuss the nature of market risk and appropriate measures Market Risk Overview We will discuss the nature of market risk and appropriate measures RiskMetrics Historic (back stimulation) approach Monte Carlo simulation approach Link between market risk and required

More information

Quantitative Methods

Quantitative Methods THE ASSOCIATION OF BUSINESS EXECUTIVES DIPLOMA PART 2 QM Quantitative Methods afternoon 26 May 2004 1 Time allowed: 3 hours. 2 Answer any FOUR questions. 3 All questions carry 25 marks. Marks for subdivisions

More information

STK 3505/4505: Summary of the course

STK 3505/4505: Summary of the course November 22, 2016 CH 2: Getting started the Monte Carlo Way How to use Monte Carlo methods for estimating quantities ψ related to the distribution of X, based on the simulations X1,..., X m: mean: X =

More information

Advanced Financial Economics Homework 2 Due on April 14th before class

Advanced Financial Economics Homework 2 Due on April 14th before class Advanced Financial Economics Homework 2 Due on April 14th before class March 30, 2015 1. (20 points) An agent has Y 0 = 1 to invest. On the market two financial assets exist. The first one is riskless.

More information

Ederington's ratio with production flexibility. Abstract

Ederington's ratio with production flexibility. Abstract Ederington's ratio with production flexibility Benoît Sévi LASER CREDEN Université Montpellier I Abstract The impact of flexibility upon hedging decision is examined for a competitive firm under demand

More information

Chapter 7: Random Variables and Discrete Probability Distributions

Chapter 7: Random Variables and Discrete Probability Distributions Chapter 7: Random Variables and Discrete Probability Distributions 7. Random Variables and Probability Distributions This section introduced the concept of a random variable, which assigns a numerical

More information

Basics of Probability

Basics of Probability Basics of Probability By A.V. Vedpuriswar October 2, 2016 2, 2016 Random variables and events A random variable is an uncertain quantity. A outcome is an observed value of a random variable. An event is

More information

Tries to understand the prices or values of claims to uncertain payments.

Tries to understand the prices or values of claims to uncertain payments. Asset pricing Tries to understand the prices or values of claims to uncertain payments. If stocks have an average real return of about 8%, then 2% may be due to interest rates and the remaining 6% is a

More information

STATS 200: Introduction to Statistical Inference. Lecture 4: Asymptotics and simulation

STATS 200: Introduction to Statistical Inference. Lecture 4: Asymptotics and simulation STATS 200: Introduction to Statistical Inference Lecture 4: Asymptotics and simulation Recap We ve discussed a few examples of how to determine the distribution of a statistic computed from data, assuming

More information

Portfolio Management

Portfolio Management Portfolio Management Risk & Return Return Income received on an investment (Dividend) plus any change in market price( Capital gain), usually expressed as a percent of the beginning market price of the

More information

Alternative VaR Models

Alternative VaR Models Alternative VaR Models Neil Roeth, Senior Risk Developer, TFG Financial Systems. 15 th July 2015 Abstract We describe a variety of VaR models in terms of their key attributes and differences, e.g., parametric

More information

Minimum Variance Hedging for Managing Price Risks

Minimum Variance Hedging for Managing Price Risks Minimum Variance Hedging for Managing Price Risks Fikri Karaesmen fkaraesmen@ku.edu.tr Koç University with Caner Canyakmaz and Süleyman Özekici SMMSO Conference, June 4-9, 2017, Acaya - Lecce, Italy My

More information

Stock Price Behavior. Stock Price Behavior

Stock Price Behavior. Stock Price Behavior Major Topics Statistical Properties Volatility Cross-Country Relationships Business Cycle Behavior Page 1 Statistical Behavior Previously examined from theoretical point the issue: To what extent can the

More information

Chapter 7: Point Estimation and Sampling Distributions

Chapter 7: Point Estimation and Sampling Distributions Chapter 7: Point Estimation and Sampling Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 20 Motivation In chapter 3, we learned

More information

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A

Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Week 1 Quantitative Analysis of Financial Markets Basic Statistics A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Random Variables. Copyright 2009 Pearson Education, Inc.

Random Variables. Copyright 2009 Pearson Education, Inc. Random Variables Copyright 2009 Pearson Education, Inc. A random variable assumes a value based on the outcome of a random event. We use a capital letter, like X, to note a random variable. A particular

More information