The mean-risk portfolio optimization model

Size: px
Start display at page:

Download "The mean-risk portfolio optimization model"

Transcription

1 The mean-risk portfolio optimization model

2 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ.

3 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ. Let P be the family of all portfolios consisting of the obove d assets

4 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ. Let P be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in P is uniquelly determined by its weight vector w = (w i ) IR d with i=1 d w i = 1. w i > 0 (w i < 0) represents a long (short) investment.

5 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ. Let P be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in P is uniquelly determined by its weight vector w = (w i ) IR d with i=1 d w i = 1. w i > 0 (w i < 0) represents a long (short) investment. The return of portfolio w is the r.v. Z(w) = d i=1 w ix i. The expected portfolio return is E(Z(w)) = w T µ.

6 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ. Let P be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in P is uniquelly determined by its weight vector w = (w i ) IR d with i=1 d w i = 1. w i > 0 (w i < 0) represents a long (short) investment. The return of portfolio w is the r.v. Z(w) = d i=1 w ix i. The expected portfolio return is E(Z(w)) = w T µ. Let P m be the family of portfolios in P with E(Z(w)) = m, for some m IR, m > 0. P m := {w = (w i ) IR d, d i=1 w i = 1,w T µ = m}

7 The mean-risk portfolio optimization model Consider a portfolio of d risky assets and the random vector X = (X 1,X 2,...,X d ) T of their returns. Let E(X) = µ. Let P be the family of all portfolios consisting of the obove d assets Any (long-short) portfolio in P is uniquelly determined by its weight vector w = (w i ) IR d with i=1 d w i = 1. w i > 0 (w i < 0) represents a long (short) investment. The return of portfolio w is the r.v. Z(w) = d i=1 w ix i. The expected portfolio return is E(Z(w)) = w T µ. Let P m be the family of portfolios in P with E(Z(w)) = m, for some m IR, m > 0. P m := {w = (w i ) IR d, d i=1 w i = 1,w T µ = m} For a risk emasure ρ the mean-ρ portfolio optimization model is: min w P m ρ(z(w)) (1)

8 The mean-risk portfolio optimization model (contd.)

9 The mean-risk portfolio optimization model (contd.) If ρ equals the portfolio variance we get min w Pm var(z(w))

10 The mean-risk portfolio optimization model (contd.) If ρ equals the portfolio variance we get min w Pm var(z(w)) If Cov(x) = Σ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952): min w s.t. w T Σw w T µ = m d i=1 w i = 1

11 The mean-risk portfolio optimization model (contd.) If ρ equals the portfolio variance we get min w Pm var(z(w)) If Cov(x) = Σ and the weights are nonnegative (long-only portfolio) we get the Markovitz portfolio optimization model (Markowitz 1952): min w s.t. w T Σw w T µ = m d i=1 w i = 1 If ρ = VaR α, α (0,1) we get the mean-var pf. optimization model min w P m VaR α (Z(w)). Question: What is the relationship between these three portfolio optimization models?

12 Mean-risk portfolio optimization in the case of elliptically distributed asset returns

13 Mean-risk portfolio optimization in the case of elliptically distributed asset returns Theorem: (Embrechts et al., 2002) Let M be the set of returns of the portfolii in P := {w = (w i ) IR d, d i=1 w i = 1}. Let the asset returns X = (X 1,X 2,...,X d ) be elliptically distributed, X = (X 1,X 2,...,X d ) E d (µ,σ,ψ) for some µ IR d, Σ IR d d and ψ: IR IR. Then VaR α ist coherent in M, for any α (0.5,1).

14 Mean-risk portfolio optimization in the case of elliptically distributed asset returns Theorem: (Embrechts et al., 2002) Let M be the set of returns of the portfolii in P := {w = (w i ) IR d, d i=1 w i = 1}. Let the asset returns X = (X 1,X 2,...,X d ) be elliptically distributed, X = (X 1,X 2,...,X d ) E d (µ,σ,ψ) for some µ IR d, Σ IR d d and ψ: IR IR. Then VaR α ist coherent in M, for any α (0.5,1). Theorem: (Embrechts et al., 2002) Let X = (X 1,X 2,...,X d ) = µ+ay be elliptically distributed with µ IR d, A IR d k and a spherically distributed vector Y S k (ψ). Assume that 0 < E(Xk 2 ) < holds k. If the risk measure ρ has the properties (C1) and (C3) and ρ(y 1 ) > 0 for the first component Y 1 of Y, then argmin{ρ(z(w)): w P m } = argmin{var(z(w)): w P m }

15 Copulas: Definition and basic properties

16 Copulas: Definition and basic properties Definition: A d-dimensional copula is a distribution function on [0,1] d with uniform marginal distributions on [0, 1].

17 Copulas: Definition and basic properties Definition: A d-dimensional copula is a distribution function on [0,1] d with uniform marginal distributions on [0, 1]. Equivalently, a copula C is a function C: [0,1] d [0,1], with the following properties: 1. C(u 1,u 2,...,u d ) is mon. increasing in each variable u i, 1 i d. 2. C(1,1,...,1,u k,1,...,1) = u k for any k {1,...,d} and u k [0,1]. 3. The rectangle inequality holds (a 1,a 2,...,a d ) [0,1] d, (b 1,b 2,...,b d ) [0,1] d with a k b k, k {1,2,...,d}: 2... k 1=1 2 ( 1) k1+k2+...+k d C(u 1k1,u 2k2,...,u dkd ) 0, k d =1 where u j1 = a j and u j2 = b j.

18 Copulas: Definition and basic properties Definition: A d-dimensional copula is a distribution function on [0,1] d with uniform marginal distributions on [0, 1]. Equivalently, a copula C is a function C: [0,1] d [0,1], with the following properties: 1. C(u 1,u 2,...,u d ) is mon. increasing in each variable u i, 1 i d. 2. C(1,1,...,1,u k,1,...,1) = u k for any k {1,...,d} and u k [0,1]. 3. The rectangle inequality holds (a 1,a 2,...,a d ) [0,1] d, (b 1,b 2,...,b d ) [0,1] d with a k b k, k {1,2,...,d}: 2... k 1=1 2 ( 1) k1+k2+...+k d C(u 1k1,u 2k2,...,u dkd ) 0, k d =1 where u j1 = a j and u j2 = b j. Remark: The k-dimensional marginal distributions of a d-dimensional copula are k-dimensional copulas, for all 2 k d.

19 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function.

20 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing.

21 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous.

22 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous. 4. h (h(x)) x

23 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous. 4. h (h(x)) x 5. h(h (y)) y

24 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous. 4. h (h(x)) x 5. h(h (y)) y 6. h is strictly monotone increasing = h (h(x)) = x.

25 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous. 4. h (h(x)) x 5. h(h (y)) y 6. h is strictly monotone increasing = h (h(x)) = x. 7. h is continuous = h(h (y)) = y.

26 Lemma: Let h: IR IR be a monotone increasing function with h(ir) = IR and h : IR IR be the generalized inverse function of h. Then the following statements hold: 1. h is eine monotone increasing left continuous function. 2. h is continuous h is strictly monotone increasing. 3. h is strictly monotone increasing h is continuous. 4. h (h(x)) x 5. h(h (y)) y 6. h is strictly monotone increasing = h (h(x)) = x. 7. h is continuous = h(h (y)) = y. Lemma: Let X be a r.v. with continuous distribution function F. Then P (F (F(x)) = x) = 1, i.e. F (F(X)) a.s. = X

Capital Allocation Principles

Capital Allocation Principles Capital Allocation Principles Maochao Xu Department of Mathematics Illinois State University mxu2@ilstu.edu Capital Dhaene, et al., 2011, Journal of Risk and Insurance The level of the capital held by

More information

Mathematics in Finance

Mathematics in Finance Mathematics in Finance Steven E. Shreve Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213 USA shreve@andrew.cmu.edu A Talk in the Series Probability in Science and Industry

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Risk Measures Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com Reference: Chapter 8

More information

Statistics and Their Distributions

Statistics and Their Distributions Statistics and Their Distributions Deriving Sampling Distributions Example A certain system consists of two identical components. The life time of each component is supposed to have an expentional distribution

More information

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory

MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory MS-E2114 Investment Science Lecture 5: Mean-variance portfolio theory A. Salo, T. Seeve Systems Analysis Laboratory Department of System Analysis and Mathematics Aalto University, School of Science Overview

More information

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise.

Version A. Problem 1. Let X be the continuous random variable defined by the following pdf: 1 x/2 when 0 x 2, f(x) = 0 otherwise. Math 224 Q Exam 3A Fall 217 Tues Dec 12 Version A Problem 1. Let X be the continuous random variable defined by the following pdf: { 1 x/2 when x 2, f(x) otherwise. (a) Compute the mean µ E[X]. E[X] x

More information

Asymptotic methods in risk management. Advances in Financial Mathematics

Asymptotic methods in risk management. Advances in Financial Mathematics Asymptotic methods in risk management Peter Tankov Based on joint work with A. Gulisashvili Advances in Financial Mathematics Paris, January 7 10, 2014 Peter Tankov (Université Paris Diderot) Asymptotic

More information

Measures of Contribution for Portfolio Risk

Measures of Contribution for Portfolio Risk X Workshop on Quantitative Finance Milan, January 29-30, 2009 Agenda Coherent Measures of Risk Spectral Measures of Risk Capital Allocation Euler Principle Application Risk Measurement Risk Attribution

More information

Financial Economics 4: Portfolio Theory

Financial Economics 4: Portfolio Theory Financial Economics 4: Portfolio Theory Stefano Lovo HEC, Paris What is a portfolio? Definition A portfolio is an amount of money invested in a number of financial assets. Example Portfolio A is worth

More information

Strategies for Improving the Efficiency of Monte-Carlo Methods

Strategies for Improving the Efficiency of Monte-Carlo Methods Strategies for Improving the Efficiency of Monte-Carlo Methods Paul J. Atzberger General comments or corrections should be sent to: paulatz@cims.nyu.edu Introduction The Monte-Carlo method is a useful

More information

Pricing and risk of financial products

Pricing and risk of financial products and risk of financial products Prof. Dr. Christian Weiß Riga, 27.02.2018 Observations AAA bonds are typically regarded as risk-free investment. Only examples: Government bonds of Australia, Canada, Denmark,

More information

PORTFOLIO OPTIMIZATION AND SHARPE RATIO BASED ON COPULA APPROACH

PORTFOLIO OPTIMIZATION AND SHARPE RATIO BASED ON COPULA APPROACH VOLUME 6, 01 PORTFOLIO OPTIMIZATION AND SHARPE RATIO BASED ON COPULA APPROACH Mária Bohdalová I, Michal Gregu II Comenius University in Bratislava, Slovakia In this paper we will discuss the allocation

More information

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors

3.4 Copula approach for modeling default dependency. Two aspects of modeling the default times of several obligors 3.4 Copula approach for modeling default dependency Two aspects of modeling the default times of several obligors 1. Default dynamics of a single obligor. 2. Model the dependence structure of defaults

More information

Risk and Management: Goals and Perspective

Risk and Management: Goals and Perspective Etymology: Risicare Risk and Management: Goals and Perspective Risk (Oxford English Dictionary): (Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation

More information

Lecture 1 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia.

Lecture 1 of 4-part series. Spring School on Risk Management, Insurance and Finance European University at St. Petersburg, Russia. Principles and Lecture 1 of 4-part series Spring School on Risk, Insurance and Finance European University at St. Petersburg, Russia 2-4 April 2012 s University of Connecticut, USA page 1 s Outline 1 2

More information

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as

Chapter 3 Common Families of Distributions. Definition 3.4.1: A family of pmfs or pdfs is called exponential family if it can be expressed as Lecture 0 on BST 63: Statistical Theory I Kui Zhang, 09/9/008 Review for the previous lecture Definition: Several continuous distributions, including uniform, gamma, normal, Beta, Cauchy, double exponential

More information

OPTIMAL PORTFOLIO OF THE GOVERNMENT PENSION INVESTMENT FUND BASED ON THE SYSTEMIC RISK EVALUATED BY A NEW ASYMMETRIC COPULA

OPTIMAL PORTFOLIO OF THE GOVERNMENT PENSION INVESTMENT FUND BASED ON THE SYSTEMIC RISK EVALUATED BY A NEW ASYMMETRIC COPULA Advances in Science, Technology and Environmentology Special Issue on the Financial & Pension Mathematical Science Vol. B13 (2016.3), 21 38 OPTIMAL PORTFOLIO OF THE GOVERNMENT PENSION INVESTMENT FUND BASED

More information

An Introduction to Copulas with Applications

An Introduction to Copulas with Applications An Introduction to Copulas with Applications Svenska Aktuarieföreningen Stockholm 4-3- Boualem Djehiche, KTH & Skandia Liv Henrik Hult, University of Copenhagen I Introduction II Introduction to copulas

More information

Mean-Variance Optimal Portfolios in the Presence of a Benchmark with Applications to Fraud Detection

Mean-Variance Optimal Portfolios in the Presence of a Benchmark with Applications to Fraud Detection Mean-Variance Optimal Portfolios in the Presence of a Benchmark with Applications to Fraud Detection Carole Bernard (University of Waterloo) Steven Vanduffel (Vrije Universiteit Brussel) Fields Institute,

More information

Statistics for Business and Economics

Statistics for Business and Economics Statistics for Business and Economics Chapter 5 Continuous Random Variables and Probability Distributions Ch. 5-1 Probability Distributions Probability Distributions Ch. 4 Discrete Continuous Ch. 5 Probability

More information

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require

u (x) < 0. and if you believe in diminishing return of the wealth, then you would require Chapter 8 Markowitz Portfolio Theory 8.7 Investor Utility Functions People are always asked the question: would more money make you happier? The answer is usually yes. The next question is how much more

More information

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate

ECSE B Assignment 5 Solutions Fall (a) Using whichever of the Markov or the Chebyshev inequalities is applicable, estimate ECSE 304-305B Assignment 5 Solutions Fall 2008 Question 5.1 A positive scalar random variable X with a density is such that EX = µ

More information

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem

Chapter 8: CAPM. 1. Single Index Model. 2. Adding a Riskless Asset. 3. The Capital Market Line 4. CAPM. 5. The One-Fund Theorem Chapter 8: CAPM 1. Single Index Model 2. Adding a Riskless Asset 3. The Capital Market Line 4. CAPM 5. The One-Fund Theorem 6. The Characteristic Line 7. The Pricing Model Single Index Model 1 1. Covariance

More information

Conditional Value-at-Risk: Theory and Applications

Conditional Value-at-Risk: Theory and Applications The School of Mathematics Conditional Value-at-Risk: Theory and Applications by Jakob Kisiala s1301096 Dissertation Presented for the Degree of MSc in Operational Research August 2015 Supervised by Dr

More information

Portfolio selection with multiple risk measures

Portfolio selection with multiple risk measures Portfolio selection with multiple risk measures Garud Iyengar Columbia University Industrial Engineering and Operations Research Joint work with Carlos Abad Outline Portfolio selection and risk measures

More information

Determination and Estimation of Risk Aversion Coefficients

Determination and Estimation of Risk Aversion Coefficients Mathematical Statistics Stockholm University Determination and Estimation of Risk Aversion Coefficients Taras Bodnar Yarema Okhrin Valdemar Vitlinskyy Taras Zabolotskyy Research Report 015:3 ISSN 1650-0377

More information

The Markowitz framework

The Markowitz framework IGIDR, Bombay 4 May, 2011 Goals What is a portfolio? Asset classes that define an Indian portfolio, and their markets. Inputs to portfolio optimisation: measuring returns and risk of a portfolio Optimisation

More information

Techniques for Calculating the Efficient Frontier

Techniques for Calculating the Efficient Frontier Techniques for Calculating the Efficient Frontier Weerachart Kilenthong RIPED, UTCC c Kilenthong 2017 Tee (Riped) Introduction 1 / 43 Two Fund Theorem The Two-Fund Theorem states that we can reach any

More information

Bivariate Birnbaum-Saunders Distribution

Bivariate Birnbaum-Saunders Distribution Department of Mathematics & Statistics Indian Institute of Technology Kanpur January 2nd. 2013 Outline 1 Collaborators 2 3 Birnbaum-Saunders Distribution: Introduction & Properties 4 5 Outline 1 Collaborators

More information

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs

Stochastic Programming and Financial Analysis IE447. Midterm Review. Dr. Ted Ralphs Stochastic Programming and Financial Analysis IE447 Midterm Review Dr. Ted Ralphs IE447 Midterm Review 1 Forming a Mathematical Programming Model The general form of a mathematical programming model is:

More information

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION

CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION CHOICE THEORY, UTILITY FUNCTIONS AND RISK AVERSION Szabolcs Sebestyén szabolcs.sebestyen@iscte.pt Master in Finance INVESTMENTS Sebestyén (ISCTE-IUL) Choice Theory Investments 1 / 65 Outline 1 An Introduction

More information

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Asset Allocation and Risk Management Martin B. Haugh Department of Industrial Engineering and Operations Research Columbia University Outline Review of Mean-Variance Analysis

More information

Equal Contributions to Risk and Portfolio Construction

Equal Contributions to Risk and Portfolio Construction Equal Contributions to Risk and Portfolio Construction Master Thesis by David Stefanovits stedavid@student.ethz.ch ETH Zurich 8092 Zurich, Switzerland Supervised by: Paul Embrechts (ETH Zürich) Frank Häusler

More information

STAT/MATH 395 PROBABILITY II

STAT/MATH 395 PROBABILITY II STAT/MATH 395 PROBABILITY II Distribution of Random Samples & Limit Theorems Néhémy Lim University of Washington Winter 2017 Outline Distribution of i.i.d. Samples Convergence of random variables The Laws

More information

Session 8: The Markowitz problem p. 1

Session 8: The Markowitz problem p. 1 Session 8: The Markowitz problem Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 8: The Markowitz problem p. 1 Portfolio optimisation Session 8: The Markowitz problem

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Risk Measures, Stochastic Orders and Comonotonicity

Risk Measures, Stochastic Orders and Comonotonicity Risk Measures, Stochastic Orders and Comonotonicity Jan Dhaene Risk Measures, Stochastic Orders and Comonotonicity p. 1/50 Sums of r.v. s Many problems in risk theory involve sums of r.v. s: S = X 1 +

More information

Value of Flexibility in Managing R&D Projects Revisited

Value of Flexibility in Managing R&D Projects Revisited Value of Flexibility in Managing R&D Projects Revisited Leonardo P. Santiago & Pirooz Vakili November 2004 Abstract In this paper we consider the question of whether an increase in uncertainty increases

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Other Miscellaneous Topics and Applications of Monte-Carlo Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Pareto-optimal reinsurance arrangements under general model settings

Pareto-optimal reinsurance arrangements under general model settings Pareto-optimal reinsurance arrangements under general model settings Jun Cai, Haiyan Liu, and Ruodu Wang Abstract In this paper, we study Pareto optimality of reinsurance arrangements under general model

More information

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ.

Definition 9.1 A point estimate is any function T (X 1,..., X n ) of a random sample. We often write an estimator of the parameter θ as ˆθ. 9 Point estimation 9.1 Rationale behind point estimation When sampling from a population described by a pdf f(x θ) or probability function P [X = x θ] knowledge of θ gives knowledge of the entire population.

More information

Optimizing Portfolios

Optimizing Portfolios Optimizing Portfolios An Undergraduate Introduction to Financial Mathematics J. Robert Buchanan 2010 Introduction Investors may wish to adjust the allocation of financial resources including a mixture

More information

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam.

The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay. Solutions to Final Exam. The University of Chicago, Booth School of Business Business 41202, Spring Quarter 2011, Mr. Ruey S. Tsay Solutions to Final Exam Problem A: (32 pts) Answer briefly the following questions. 1. Suppose

More information

Pricing theory of financial derivatives

Pricing theory of financial derivatives Pricing theory of financial derivatives One-period securities model S denotes the price process {S(t) : t = 0, 1}, where S(t) = (S 1 (t) S 2 (t) S M (t)). Here, M is the number of securities. At t = 1,

More information

PORTFOLIO MODELLING USING THE THEORY OF COPULA IN LATVIAN AND AMERICAN EQUITY MARKET

PORTFOLIO MODELLING USING THE THEORY OF COPULA IN LATVIAN AND AMERICAN EQUITY MARKET PORTFOLIO MODELLING USING THE THEORY OF COPULA IN LATVIAN AND AMERICAN EQUITY MARKET Vladimirs Jansons Konstantins Kozlovskis Natala Lace Faculty of Engineering Economics Riga Technical University Kalku

More information

Review of the Topics for Midterm I

Review of the Topics for Midterm I Review of the Topics for Midterm I STA 100 Lecture 9 I. Introduction The objective of statistics is to make inferences about a population based on information contained in a sample. A population is the

More information

ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES

ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES Small business banking and financing: a global perspective Cagliari, 25-26 May 2007 ADVANCED OPERATIONAL RISK MODELLING IN BANKS AND INSURANCE COMPANIES C. Angela, R. Bisignani, G. Masala, M. Micocci 1

More information

Risk and Management: Goals and Perspective

Risk and Management: Goals and Perspective Etymology: Risicare Risk and Management: Goals and Perspective Risk (Oxford English Dictionary): (Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation

More information

AMH4 - ADVANCED OPTION PRICING. Contents

AMH4 - ADVANCED OPTION PRICING. Contents AMH4 - ADVANCED OPTION PRICING ANDREW TULLOCH Contents 1. Theory of Option Pricing 2 2. Black-Scholes PDE Method 4 3. Martingale method 4 4. Monte Carlo methods 5 4.1. Method of antithetic variances 5

More information

Statistical analysis and bootstrapping

Statistical analysis and bootstrapping Statistical analysis and bootstrapping p. 1/15 Statistical analysis and bootstrapping Michel Bierlaire michel.bierlaire@epfl.ch Transport and Mobility Laboratory Statistical analysis and bootstrapping

More information

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria

Asymmetric Information: Walrasian Equilibria, and Rational Expectations Equilibria Asymmetric Information: Walrasian Equilibria and Rational Expectations Equilibria 1 Basic Setup Two periods: 0 and 1 One riskless asset with interest rate r One risky asset which pays a normally distributed

More information

An application of capital allocation principles to operational risk

An application of capital allocation principles to operational risk MPRA Munich Personal RePEc Archive An application of capital allocation principles to operational risk Jilber Urbina and Montserrat Guillén Department of Economics and CREIP, Universitat Rovira i Virgili,

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

A class of coherent risk measures based on one-sided moments

A class of coherent risk measures based on one-sided moments A class of coherent risk measures based on one-sided moments T. Fischer Darmstadt University of Technology November 11, 2003 Abstract This brief paper explains how to obtain upper boundaries of shortfall

More information

Comparison results for credit risk portfolios

Comparison results for credit risk portfolios Université Claude Bernard Lyon 1, ISFA AFFI Paris Finance International Meeting - 20 December 2007 Joint work with Jean-Paul LAURENT Introduction Presentation devoted to risk analysis of credit portfolios

More information

IEOR E4602: Quantitative Risk Management

IEOR E4602: Quantitative Risk Management IEOR E4602: Quantitative Risk Management Basic Concepts and Techniques of Risk Management Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Chapter 3 Discrete Random Variables and Probability Distributions

Chapter 3 Discrete Random Variables and Probability Distributions Chapter 3 Discrete Random Variables and Probability Distributions Part 2: Mean and Variance of a Discrete Random Variable Section 3.4 1 / 16 Discrete Random Variable - Expected Value In a random experiment,

More information

Lecture 6: Risk and uncertainty

Lecture 6: Risk and uncertainty Lecture 6: Risk and uncertainty Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe Portfolio and Asset Liability Management Summer Semester 2008 Prof.

More information

6 Central Limit Theorem. (Chs 6.4, 6.5)

6 Central Limit Theorem. (Chs 6.4, 6.5) 6 Central Limit Theorem (Chs 6.4, 6.5) Motivating Example In the next few weeks, we will be focusing on making statistical inference about the true mean of a population by using sample datasets. Examples?

More information

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota

Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS. Jan Werner. University of Minnesota Course Handouts - Introduction ECON 8704 FINANCIAL ECONOMICS Jan Werner University of Minnesota SPRING 2019 1 I.1 Equilibrium Prices in Security Markets Assume throughout this section that utility functions

More information

P2.T8. Risk Management & Investment Management. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, 3rd Edition.

P2.T8. Risk Management & Investment Management. Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, 3rd Edition. P2.T8. Risk Management & Investment Management Jorion, Value at Risk: The New Benchmark for Managing Financial Risk, 3rd Edition. Bionic Turtle FRM Study Notes By David Harper, CFA FRM CIPM and Deepa Raju

More information

Financial Risk: Credit Risk, Lecture 2

Financial Risk: Credit Risk, Lecture 2 Financial Risk: Credit Risk, Lecture 2 Alexander Herbertsson Centre For Finance/Department of Economics School of Business, Economics and Law, University of Gothenburg E-mail: Alexander.Herbertsson@economics.gu.se

More information

. (i) What is the probability that X is at most 8.75? =.875

. (i) What is the probability that X is at most 8.75? =.875 Worksheet 1 Prep-Work (Distributions) 1)Let X be the random variable whose c.d.f. is given below. F X 0 0.3 ( x) 0.5 0.8 1.0 if if if if if x 5 5 x 10 10 x 15 15 x 0 0 x Compute the mean, X. (Hint: First

More information

Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk

Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk MONETARY AND ECONOMIC STUDIES/APRIL 2002 Comparative Analyses of Expected Shortfall and Value-at-Risk (2): Expected Utility Maximization and Tail Risk Yasuhiro Yamai and Toshinao Yoshiba We compare expected

More information

Maximization of utility and portfolio selection models

Maximization of utility and portfolio selection models Maximization of utility and portfolio selection models J. F. NEVES P. N. DA SILVA C. F. VASCONCELLOS Abstract Modern portfolio theory deals with the combination of assets into a portfolio. It has diversification

More information

Lecture 22. Survey Sampling: an Overview

Lecture 22. Survey Sampling: an Overview Math 408 - Mathematical Statistics Lecture 22. Survey Sampling: an Overview March 25, 2013 Konstantin Zuev (USC) Math 408, Lecture 22 March 25, 2013 1 / 16 Survey Sampling: What and Why In surveys sampling

More information

The Optimization Process: An example of portfolio optimization

The Optimization Process: An example of portfolio optimization ISyE 6669: Deterministic Optimization The Optimization Process: An example of portfolio optimization Shabbir Ahmed Fall 2002 1 Introduction Optimization can be roughly defined as a quantitative approach

More information

Financial Giffen Goods: Examples and Counterexamples

Financial Giffen Goods: Examples and Counterexamples Financial Giffen Goods: Examples and Counterexamples RolfPoulsen and Kourosh Marjani Rasmussen Abstract In the basic Markowitz and Merton models, a stock s weight in efficient portfolios goes up if its

More information

Optimization Approaches Applied to Mathematical Finance

Optimization Approaches Applied to Mathematical Finance Optimization Approaches Applied to Mathematical Finance Tai-Ho Wang tai-ho.wang@baruch.cuny.edu Baruch-NSD Summer Camp Lecture 5 August 7, 2017 Outline Quick review of optimization problems and duality

More information

Logarithmic derivatives of densities for jump processes

Logarithmic derivatives of densities for jump processes Logarithmic derivatives of densities for jump processes Atsushi AKEUCHI Osaka City University (JAPAN) June 3, 29 City University of Hong Kong Workshop on Stochastic Analysis and Finance (June 29 - July

More information

IEOR E4703: Monte-Carlo Simulation

IEOR E4703: Monte-Carlo Simulation IEOR E4703: Monte-Carlo Simulation Simulation Efficiency and an Introduction to Variance Reduction Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University

More information

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6

Tutorial 6. Sampling Distribution. ENGG2450A Tutors. 27 February The Chinese University of Hong Kong 1/6 Tutorial 6 Sampling Distribution ENGG2450A Tutors The Chinese University of Hong Kong 27 February 2017 1/6 Random Sample and Sampling Distribution 2/6 Random sample Consider a random variable X with distribution

More information

Transactions with Hidden Action: Part 1. Dr. Margaret Meyer Nuffield College

Transactions with Hidden Action: Part 1. Dr. Margaret Meyer Nuffield College Transactions with Hidden Action: Part 1 Dr. Margaret Meyer Nuffield College 2015 Transactions with hidden action A risk-neutral principal (P) delegates performance of a task to an agent (A) Key features

More information

MULTIPERIOD PORTFOLIO SELECTION WITH TRANSACTION AND MARKET-IMPACT COSTS

MULTIPERIOD PORTFOLIO SELECTION WITH TRANSACTION AND MARKET-IMPACT COSTS Working Paper 13-16 Statistics and Econometrics Series (15) May 2013 Departamento de Estadística Universidad Carlos III de Madrid Calle Madrid, 126 28903 Getafe (Spain) Fax (34) 91 624-98-48 MULTIPERIOD

More information

Pricing multi-asset financial products with tail dependence using copulas

Pricing multi-asset financial products with tail dependence using copulas Pricing multi-asset financial products with tail dependence using copulas Master s Thesis J.P. de Kort Delft University of Technology Delft Institute for Applied Mathematics and ABN AMRO Bank N.V. Product

More information

Portfolio optimization for Student t and skewed t returns

Portfolio optimization for Student t and skewed t returns Portfolio optimization for Student t and skewed t returns Wenbo Hu Quantitative Trader Bell Trading 111 W Jackson Blvd, Suite 1122 Chicago, IL 60604 312-379-5343 whu@belltrading.us Alec N. Kercheval Associate

More information

Econ 424/CFRM 462 Portfolio Risk Budgeting

Econ 424/CFRM 462 Portfolio Risk Budgeting Econ 424/CFRM 462 Portfolio Risk Budgeting Eric Zivot August 14, 2014 Portfolio Risk Budgeting Idea: Additively decompose a measure of portfolio risk into contributions from the individual assets in the

More information

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems

CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems CSCI 1951-G Optimization Methods in Finance Part 00: Course Logistics Introduction to Finance Optimization Problems January 26, 2018 1 / 24 Basic information All information is available in the syllabus

More information

Risk Measurement in Credit Portfolio Models

Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 1 Risk Measurement in Credit Portfolio Models 9 th DGVFM Scientific Day 30 April 2010 9 th DGVFM Scientific Day 30 April 2010 2 Quantitative Risk Management Profit

More information

Stochastic Computation in Finance

Stochastic Computation in Finance Stochastic Computation in Finance Chuan-Hsiang Han Dept. of Quantitative Finance, NTHU Dept of Math & CS Education TMUE November 3, 2008 Outline History of Math and Finance: Fundamental Problems in Modern

More information

Random Variable: Definition

Random Variable: Definition Random Variables Random Variable: Definition A Random Variable is a numerical description of the outcome of an experiment Experiment Roll a die 10 times Inspect a shipment of 100 parts Open a gas station

More information

A Copula-GARCH Model of Conditional Dependencies: Estimating Tehran Market Stock. Exchange Value-at-Risk

A Copula-GARCH Model of Conditional Dependencies: Estimating Tehran Market Stock. Exchange Value-at-Risk Journal of Statistical and Econometric Methods, vol.2, no.2, 2013, 39-50 ISSN: 1792-6602 (print), 1792-6939 (online) Scienpress Ltd, 2013 A Copula-GARCH Model of Conditional Dependencies: Estimating Tehran

More information

MODELING DEPENDENCY RELATIONSHIPS WITH COPULAS

MODELING DEPENDENCY RELATIONSHIPS WITH COPULAS MODELING DEPENDENCY RELATIONSHIPS WITH COPULAS Joseph Atwood jatwood@montana.edu and David Buschena buschena.@montana.edu SCC-76 Annual Meeting, Gulf Shores, March 2007 REINSURANCE COMPANY REQUIREMENT

More information

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics

Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall Financial mathematics Lecture IV Portfolio management: Efficient portfolios. Introduction to Finance Mathematics Fall 2014 Reduce the risk, one asset Let us warm up by doing an exercise. We consider an investment with σ 1 =

More information

Session 10: Lessons from the Markowitz framework p. 1

Session 10: Lessons from the Markowitz framework p. 1 Session 10: Lessons from the Markowitz framework Susan Thomas http://www.igidr.ac.in/ susant susant@mayin.org IGIDR Bombay Session 10: Lessons from the Markowitz framework p. 1 Recap The Markowitz question:

More information

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School)

SDMR Finance (2) Olivier Brandouy. University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) SDMR Finance (2) Olivier Brandouy University of Paris 1, Panthéon-Sorbonne, IAE (Sorbonne Graduate Business School) Outline 1 Formal Approach to QAM : concepts and notations 2 3 Portfolio risk and return

More information

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether.

Lecture 37 Sections 11.1, 11.2, Mon, Mar 31, Hampden-Sydney College. Independent Samples: Comparing Means. Robb T. Koether. : : Lecture 37 Sections 11.1, 11.2, 11.4 Hampden-Sydney College Mon, Mar 31, 2008 Outline : 1 2 3 4 5 : When two samples are taken from two different populations, they may be taken independently or not

More information

Chapter 7: Portfolio Theory

Chapter 7: Portfolio Theory Chapter 7: Portfolio Theory 1. Introduction 2. Portfolio Basics 3. The Feasible Set 4. Portfolio Selection Rules 5. The Efficient Frontier 6. Indifference Curves 7. The Two-Asset Portfolio 8. Unrestriceted

More information

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty

Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty Extend the ideas of Kan and Zhou paper on Optimal Portfolio Construction under parameter uncertainty George Photiou Lincoln College University of Oxford A dissertation submitted in partial fulfilment for

More information

Worst-Case Value-at-Risk of Non-Linear Portfolios

Worst-Case Value-at-Risk of Non-Linear Portfolios Worst-Case Value-at-Risk of Non-Linear Portfolios Steve Zymler Daniel Kuhn Berç Rustem Department of Computing Imperial College London Portfolio Optimization Consider a market consisting of m assets. Optimal

More information

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach

ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 Portfolio Allocation Mean-Variance Approach ECO 317 Economics of Uncertainty Fall Term 2009 Tuesday October 6 ortfolio Allocation Mean-Variance Approach Validity of the Mean-Variance Approach Constant absolute risk aversion (CARA): u(w ) = exp(

More information

Reducing risk by merging counter-monotonic risks

Reducing risk by merging counter-monotonic risks Reducing risk by merging counter-monotonic risks Ka Chun Cheung, Jan Dhaene, Ambrose Lo, Qihe Tang Abstract In this article, we show that some important implications concerning comonotonic couples and

More information

Package PortRisk. R topics documented: November 1, Type Package Title Portfolio Risk Analysis Version Date

Package PortRisk. R topics documented: November 1, Type Package Title Portfolio Risk Analysis Version Date Type Package Title Portfolio Risk Analysis Version 1.1.0 Date 2015-10-31 Package PortRisk November 1, 2015 Risk Attribution of a portfolio with Volatility Risk Analysis. License GPL-2 GPL-3 Depends R (>=

More information

Chapter 7: Estimation Sections

Chapter 7: Estimation Sections 1 / 40 Chapter 7: Estimation Sections 7.1 Statistical Inference Bayesian Methods: Chapter 7 7.2 Prior and Posterior Distributions 7.3 Conjugate Prior Distributions 7.4 Bayes Estimators Frequentist Methods:

More information

LECTURE NOTES 3 ARIEL M. VIALE

LECTURE NOTES 3 ARIEL M. VIALE LECTURE NOTES 3 ARIEL M VIALE I Markowitz-Tobin Mean-Variance Portfolio Analysis Assumption Mean-Variance preferences Markowitz 95 Quadratic utility function E [ w b w ] { = E [ w] b V ar w + E [ w] }

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 22 January :00 16:00 Two Hours MATH38191 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER STATISTICAL MODELLING IN FINANCE 22 January 2015 14:00 16:00 Answer ALL TWO questions

More information

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises

2 Control variates. λe λti λe e λt i where R(t) = t Y 1 Y N(t) is the time from the last event to t. L t = e λr(t) e e λt(t) Exercises 96 ChapterVI. Variance Reduction Methods stochastic volatility ISExSoren5.9 Example.5 (compound poisson processes) Let X(t) = Y + + Y N(t) where {N(t)},Y, Y,... are independent, {N(t)} is Poisson(λ) with

More information

Sampling Distribution

Sampling Distribution MAT 2379 (Spring 2012) Sampling Distribution Definition : Let X 1,..., X n be a collection of random variables. We say that they are identically distributed if they have a common distribution. Definition

More information

Comparative Analyses of Expected Shortfall and Value-at-Risk under Market Stress

Comparative Analyses of Expected Shortfall and Value-at-Risk under Market Stress Comparative Analyses of Shortfall and Value-at-Risk under Market Stress Yasuhiro Yamai Bank of Japan Toshinao Yoshiba Bank of Japan ABSTRACT In this paper, we compare Value-at-Risk VaR) and expected shortfall

More information

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation

Exercise. Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1. Exercise Estimation Exercise Show the corrected sample variance is an unbiased estimator of population variance. S 2 = n i=1 (X i X ) 2 n 1 Exercise S 2 = = = = n i=1 (X i x) 2 n i=1 = (X i µ + µ X ) 2 = n 1 n 1 n i=1 ((X

More information