Volatility Time Scales and. Perturbations

Size: px
Start display at page:

Download "Volatility Time Scales and. Perturbations"

Transcription

1 Volatility Time Scales and Perturbations Jean-Pierre Fouque NC State University, soon UC Santa Barbara Collaborators: George Papanicolaou Stanford University Ronnie Sircar Princeton University Knut Solna UC Irvine Papers: fouque 1 Bloomberg, New York October 26, 25

2 Main Idea Use perturbation techniques to correct constant volatility models in order to capture the effects of stochastic volatility Applications to: Equity, Fixed Income, and Credit Markets 2

3 Equity Perturbations around Black-Scholes to account for: Distributions of Returns (under physical measure IP) Volatility Time Scales Smile/Skew in Implied Volatilities (under risk neutral measure IP ) 3

4 REQUIRED QUALITIES Parametrization of the Implied Volatility Surface I(t ; T, K) Universal Parsimonous Parameters: Model Independence Stability in Time: Predictive Power Easy Calibration: Practical Implementation Compatibility with Price Dynamics: Applicability to Pricing other Derivatives and Hedging 4

5 Extensive Data Ananlysis = Two-Scale Stochastic Volatility Models Under the physical measure IP: ε << T << 1/δ dx t = µx t dt + f(y t, Z t )X t dw () t dy t = 1 ε (m Y t)dt + ν 2 ε dw (1) t dz t = δ c(z t )dt + δ g(z t )dw (2) t d < W (), W (1) > t = ρ 1 dt d < W (), W (2) > t = ρ 2 dt 5

6 Two-Scale Stochastic Volatility Models ε << T << 1/δ Under the risk neutral measure IP chosen by the market: dx t = rx t dt + f(y t, Z t )X t dw () t ( 1 dy t = ε (m Y t) ν ) 2 Λ(Y t, Z t ) ε ( dz t = δ c(z t ) ) δ g(z t )Γ(Y t, Z t ) dt + ν 2 ε dw (1) t dt + δ g(z t )dw (2) t d < W (), W (1) > t = ρ 1 dt d < W (), W (2) > t = ρ 2 dt Λ and Γ: market prices of volatility risk 6

7 Pricing Equation { } P ε,δ (t, x, y, z) = IE e r(t t) h(x T ) X t = x, Y t = y, Z t = z ( 1 ε L + 1 ε L 1 + L 2 + δm 1 + δm 2 + P ε,δ (T, x, y, z) = h(x) ) δ ε M 3 P ε,δ = L = (m y) y y 2 L 1 = ν 2 (ρ 1 fx 2 x y Λ ) y L 2 = t + 1 ( 2 f2 x 2 2 x + r x ) 2 x + ν2 2 M 1 = gγ z + ρ 2gfx 2 x z M 2 = c z + g2 2 2 z 2 M 3 = ν 2 ρ 12 g 2 y z 7

8 European Options Approximations Combination of singular and regular perturbations = ( P ε,δ (t, x, y, z) P BS (t,x;t, σ) + (T t) V δ P BS σ + V 1 δ x 2 P BS x σ +(T t) ( V ε 2 x 2 2 P BS x 2 + V ε 3 x x Leading order Black-Scholes price P BS (t,x; σ(z)): L BS (σ(z))p BS = P BS (T, x; σ(z)) = h(x) at the z-dependent effective volatility σ(z): σ 2 (z) = f 2 (, z) ( x 2 2 P BS x 2 where the brackets denote the average with respect to the invariant distribution N(m f, ν 2 f ). ) )) 8

9 The small parameters (V δ, V1 δ, V2 ε, V3 ε ) are given by V δ = ν s δ Λ s σ 2 2 = ν f ε φ Λ f 2 y V ε V δ 1 = ρ 2 ν s δ 2 f σ V3 ε ν f ε = ρ 1 f φ 2 y σ = d σ/dz, and φ(y, z) is a solution of the Poisson equation L φ(y, z) = f 2 (y, z) σ 2 (z). Accuracy: Smooth payoffs: error = O(ε + δ) Calls (kinks): error = O(ε log ε + δ) Digitals (jumps): error = O(ε 2/3 log ε + δ) 9

10 P ε 1(t, x, z) = (T t) solves L BS ( σ)p ε 1 + Corrections Equations ( V ε 2 x 2 2 P BS x 2 ( V ε 2 x 2 2 P BS x 2 + V ε 3 x x + V ε 3 x x ( )) x 2 2 P BS x 2 ( )) x 2 2 P BS x 2 =, P ε 1(T, x, z) = ( ) P1 δ (t, x, z) = (T t) V δ P BS σ + V 1 δ x 2 P BS x σ solves L BS ( σ)p δ ( V δ P BS σ ) + V 1 δ x 2 P BS x σ =, P δ 1 (T, x) = (for European options: P BS σ = (T t)σx 2 2 P BS x 2 ) 1

11 Term Structure of Implied Volatility I + I ε 1 + I δ 1 = σ + [b ε + b δ (T t)] + [a ε + a δ (T t)] log(k/x) T t where the parameters ( σ, a ε, a δ, b ε, b δ ) depend on z and are related to the group parameters (V δ, V1 δ, V2 ε, V3 ε ) by a ε = V 3 ε σ 3, b ε = V 2 ε σ V 3 ε σ2 (r σ 3 2 ) a δ = V 1 δ σ 2, b δ = V δ 1 δ σ2 (r σ 2 2 ), 11

12 .5.1 α=a ε +a δ τ β=σ+b ε +b δ τ τ Term-structures fits 12

13 .38 LMMR Fit to Residual δ adjusted Implied Volatility LMMR δ-adjusted implied volatility I b δ τ a δ (LM) as a function of LMMR. The circles are from S&P 5 data, and the line R + a ε (LMMR) shows the fit using the estimated parameters. 13

14 A slow volatility factor is needed.5 Pure LMMR Fit.45.4 Implied Volatility LMMR Implied volatility as a function of LMMR. The circles are from S&P 5 data, and the line a(lmmr) + b shows the fit using maturities up to two years. 14

15 A fast volatility factor is needed.4 LM Fit to Residual.35 τ adjusted Implied Volatility LM The circles are from S&P 5 data, and the line a δ (LM) + σ shows the fit using the estimated parameters from only a slow factor fit. 15

16 .5 τ=43 days days days Implied Volatility LMMR 2 2 LMMR 1 1 LMMR τ=197 days days days Implied Volatility LMMR LMMR LMMR Figure 1: S&P 5 Implied Volatility data on June 5, 23 and fits to the affine LMMR approximation for six different maturities. 16

17 .5.1 m + m 1 τ τ(yrs) b + b 1 τ τ(yrs) Figure 2: S&P 5 Implied Volatility data on June 5, 23 and fits to the two-scales asymptotic theory. The bottom (rep. top) figure shows the linear regression of b (resp. a) with respect to time to maturity τ = T t. 17

18 Higher order terms in ε, δ and εδ I 4 a j (τ) (LM) j + 1 τ Φ t, j= where τ denotes the time-to maturity T t, LM denotes the moneyness log(k/s), and Φ t is a rapidly changing component that varies with the fast volatility factor 18

19 .5 5 June, 23: S&P 5 Options, 15 days to maturity.5 5 June, 23: S&P 5 Options, 71 days to maturity Implied Volatility.35.3 Implied Volatility Log Moneyness + 1 Log Moneyness June, 23: S&P 5 Options, 197 days to maturity.23 5 June, 23: S&P 5 Options, 379 days to maturity Implied Volatility.22.2 Implied Volatility Log Moneyness Log Moneyness + 1 Figure 3: S&P 5 Implied Volatility data on June 5, 23 and quartic fits to the asymptotic theory for four maturities. 19

20 a 4 2 a τ (yrs) τ(yrs) a a τ (yrs) Figure 4: S&P 5 Term-Structure Fit using second order approximation. Data from June 5, 23. 2

21 a 4 4 a τ (yrs.) τ a τ a τ Figure 5: S&P 5 Term-Structure Fit. Data from every trading day in May

22 Parameter Reduction and Direct Calibration ( ) L BS ( σ) P 1 + Q ( V 2 x 2 2 P BS x 2 ( V P BS σ + V 3 x x + V 1x 2 P BS x σ ( x 2 2 P BS x 2 ) = )) Set σ = σ 2 + 2V 2. At the same order, the correction is: ( PBS (T t) V σ + V 1x 2 PBS x σ + V 3x ( x 2 2 P )) BS x x 2 I b + τb δ + ( a ε + τa δ) LMMR b = σ + V ( 3 2σ 1 2r ) σ 2 b δ = V + V ( 1 1 2r ) 2 σ 2, a ε = V 3 σ 3, a δ = V 1 σ 2 22

23 Accuracy of Approximation For European options with smooth payoffs h(x): P ε,δ = PBS + P 1 + Q 1 + O(ε + δ) For European calls or puts, h(x) continuous piecewise smooth: P ε,δ = PBS + P 1 + Q 1 + O(ε log ε + δ) For European digital option, h(x) = Q1 {x>k} discontinuous: P ε,δ = PBS + P 1 + Q 1 + O(ε 2 3 log ε + δ) 23

24 Exotic Derivatives (Binary, Barrier, Asian,...) Calibrate σ, V, V 1 and V 3 on the implied volatility surface Solve the corresponding problem with constant volatility σ = P = P BS (σ ) Use V, V 1 and V 3 to compute the source ( PBS 2 V σ + V 1x 2 PBS ) + V 3 x ( x 2 2 P ) BS x σ x x 2 Get the correction by solving the SAME PROBLEM with zero boundary conditions and the source. 24

25 American Options Calibrate σ, V, V 1 and V 3 on the implied volatility surface Solve the corresponding problem with constant volatility σ = P and the free boundary x (t) Use V, V 1 and V 3 to compute the source P 2 (V σ + V 1x 2 P ) + V 3 x (x 2 2 P ) x σ x x 2 Get the correction by solving the corresponding problem with fixed boundary x (t), zero boundary conditions and the source. 25

26 First Conclusions A short time-scale of order few days is present in volatility dynamics It cannot be ignored in option pricing and hedging It can be dealt with by using singular perturbation methods It is efficient as a parametrization tool for the term structure of implied volatilities when combined with a regular perturbation 26

27 Fixed Income Perturbations around Vasicek (for instance) to account for: Volatility Time Scales Fit to Yield Curves Reference: Stochastic Volatility Corrections for Interest Rate Derivatives Mathematical Finance 14(2), April 24 27

28 Constant Volatility Vasicek Model Under the physical probability IP: d r t = a( r r t )dt + σd W t Under the risk-neutral pricing probability IP : d r t = a(r r t )dt + σd W t with a constant market price of interest rate risk λ: r = r λ σ a 28

29 Bonds Prices { Λ(t, T) = IE e T t r s ds F t } { = IE e T t r s ds r t } = P(t, r t ; T) Vasicek PDE: P t σ2 2 P x 2 + a(r x) P x x P = with the terminal condition P(t, x; T) = 1. Introduce the time-to-maturity τ = T t and seek a solution of the form: P(T τ, x; T) = A(τ)e B(τ)x by solving linear ODE s with A() = 1 and B() =. 29

30 Affine Yields B(τ) = 1 e aτ a { 1 e A(τ) = exp [R aτ τ R a + σ2 ( 1 e aτ ) ]} 2 4a 3 with Yield Curve: R = r σ2 2a 2 = r λ σ a σ2 2a 2 R(t, τ) = 1 τ log (Λ(t, t + τ)) = B(τ) r t + log A(τ) = R (R r t ) 1 e aτ aτ + σ2 4a 3 τ ( 1 e aτ ) 2 3

31 1.8 BOND PRICES MATURITY.95.9 YIELD MATURITY Figure 6: Bond prices (top) and cblue Yield curve (bottom) in the Vasicek model with a = 1, r =.1 and σ =.1. Maturity τ runs from to 3 years. R =.95 and the initial rate is x =.7. 31

32 Bond Options Prices Example: a Call Option with strike K and maturity T written on a zero-coupon bond with maturity T > T. The payoff h(λ(t, T)) = (Λ(T, T) K) + is a function of r T since Λ(T, T) = P(T, r T ; T) Call Option Price: { C(t, x; T, T ) = IE e T t } r s ds h (Λ(T, T)) r t = x solution of Vasicek PDE with terminal condition at t = T : C(T, x; T, T ) = ( P(T, x; T) K) + C(t, x; T, T ) = P(t, x; T)N(h 1 ) K P(t, x; T )N(h 2 ) 32

33 Stochastic Volatility Vasicek Models Under the physical measure: dr t = a(r r t )dt + f(y t )dw t where f is a positive function of a mean-reverting volatility driving process Y t. Example: Y t is an OU process: dy t = α(m Y t )dt + ν 2αdẐ t where Ẑt is a Brownian motion possibly correlated to the Brownian motion W t driving the short rate: Ẑ t = ρw t + 1 ρ 2 Z t (W t, Z t ) independent Brownian motions. 33

34 Stochastic Volatility Vasicek Pricing Models Under the risk-neutral pricing probability IP (λ,γ) : dr t = (a(r r t ) λ(y t )f(y t )) dt + f(y t )dwt ( dy t = α(m Y t ) ν 2α [ρλ(y t ) + γ(y t ) ]) 1 ρ 2 dt +ν ( 2α ρdwt + ) 1 ρ 2 dzt for bounded market prices of risk λ(y) and γ(y). Under fast mean-reversion: α is large 34

35 Bond Pricing P(t, x, y; T) = IE (λ,γ) {e T t } r s ds r t = x, Y t = y P t f(y)2 2 P x + (a(r 2 x) λ(y)f(y)) P x xp ( ) + α ν 2 2 P + (m y) P y2 y + ν ( 2α ρf(y) 2 P [ x y ρλ(y) + γ(y) ] ) P 1 ρ 2 y = with the terminal condition P(T, x, y; T) = 1 for every x and y. Expand : P ε = P + εp 1 + εp 2 + ε εp 3 + ε = 1/α 35

36 Leading Order Term P t σ2 x 2 2 P x 2 + a (r x) P x xp = Effective volatility σ 2 = f 2 and r = r λf /a The zero order term P (t, x) is the Vasicek bond price P (T τ, x; T) = P(T τ, x; T) = A(τ)e B(τ)x computed with the constant parameters (a, r, σ). 36

37 The Correction P 1 = εp 1 The correction P 1 solves the source problem: ( L V asicek (a, r, σ) P 1 = V 1 x + V 2 with the zero terminal condition P 1 (T, x) =. 2 x 2 + V 3 It involves the constant quantities, small of order 1/ α V 3 = ν 2α ρ fφ V 2 = ν (ρ λφ + ) 1 ρ 2 γφ 2α V 1 = ν 2 α ( ρ λψ + ) 1 ρ 2 γψ 3 ) P x 3 2 νρ α fψ 37

38 The Correction P 1 : explicit computation Using the variable τ = T t and the explicit form P = Ae Bx : P 1 τ = 1 2 σ2 2 P 1 x 2 + â(r x) P 1 x x P 1 +A(τ)e B(τ)x ( V 3 B(τ) 3 V 2 B(τ) 2 + V 1 B(τ) ) We seek a solution of the form P 1 (T τ, x; T) = D(τ)A(τ)e B(τ)x with the condition D() = so that P 1 (T, x; T) = We get: and D(τ) = V 3 â 3 V 2 â 2 D = V 3 B 3 V 2 B 2 + V 1 B (τ B(τ) 12âB(τ)2 13â2 B(τ) 3 ) (τ B(τ) 12âB(τ)2 ) + V 1 â (τ B(τ)) 38

39 Summary The corrected bond price is given by P(T τ, x, y; T) P (T τ, x; T) + P 1 (T τ, x; T) = A(τ) (1 + D(τ))e B(τ)x where D is a small factor of order 1/ α. The error P ε (t, x, y; T) ( P (t, x : T) + P ) 1 (t, x; T) is of order 1/α. Corrections for bond options prices are also obtained. 39

40 1.8 BOND PRICES MATURITY YIELD MATURITY Figure 7: Top: bond prices and corrected bond prices (dotted curve). Bottom: yield curve and corrected yield curve (dotted curve) in the simulated Vasicek model (constant and stochastic volatility) with: a = 1, r =.1 and σ =.1 as in Figure 3. Correction: V 3 = 1/ α (ρ ), α = 1 3 and λ = γ = implying V 1 = and V 2 =. Maturity τ runs from to 3 years and the initial rate is x =.7. 4

41 Model Parameters Rate of mean-reversion of short-rate: a Long-run mean under IP: r Specific volatility distribution: f( ) Correction Parameters a r Mean volatility σ Rate of mean-reversion of volatility : α Group parameter V 1 Mean-level of (Y t ): m Group parameter V 2 V-vol : β Group parameter V 3 Correlation: ρ Interest-rate risk premium: λ( ) Volatility risk premium: γ( ) 41

42 .62 Vasicek with stochastic volatility correction.6 bond yield years to maturity.62 CIR with jumps.6 bond yield years to maturity Figure 8: Snapshot of the yield curve fit with the stochastic volatility corrected Vasicek model (top) and with the single factor CIR model and down jumps (bottom) for September 6,

43 Credit Perturbations around Merton/Black-Cox (in the context of the structural approach for instance) to account for: Volatility Time Scales in Default Times Fit to Yield Spreads References: Stochastic Volatility Effects on Defaultable Bonds Submitted 24 Stochastic Volatility Effects on Default Correlations In Preparation 43

44 Defaultable Bonds In the first passage structural approach, the payoff of a defaultable zero-coupon bond written on a risky asset X is h(x) = 1 {inf s T X s >B}. By no-arbitrage, the value of the bond is P B (t, T) = IE { e r(t t) 1 {inf s T X s >B} F t } = 1 {inf s t X s >B}e r(t t) IE { 1 {inft s T X s >B} F t }, Using the predictable stopping time τ t = inf{s t, X s B}: IE { 1 {inft s T X s >B} F t } = IP {τ t > T F t }. This defaultable zero-coupon bond is in fact a binary down-an-out barrier option where the barrier level and the strike price coincide. 44

45 Constant Volatility: Merton s Approach dx t = rx t dt + σx t dwt ( X t = X exp (r 1 2 σ2 )t + σwt ). In the Merton s approach, default occurs if X T < B: Defaultable bond = European digital option u d (t, x) = IE { e rτ 1 {XT >B} X t = x } = e rτ IP {X T > B X t = x} = e rτ N(d 2 (τ)) with the usual notation τ = T t and the distance to default: log ( ) ) x B + (r σ2 2 τ d 2 (τ) = σ τ 45

46 Constant Volatility: Black-Cox Approach IE { } 1 {inft s T X s >B} F t { ) = IP inf ((r σ2 t s T 2 )(s t) + σ(w s Wt ) > log ( B x ) } X t = x computed using distribution of minimum, or using PDE s: IE { e r(t t) 1 {inft s T X s >B} F t } = u(t, X t ) where u(t, x) is the solution of the following problem which is to be solved for x > B. L BS (σ)u = on x > B, t < T u(t, B) = for any t T u(t, x) = 1 for x > B, 46

47 Constant Volatility: Barrier Options Using the European digital pricing function u d (t, x) L BS (σ)u d = on x >, t < T u d (T, x) = 1 for x > B, and otherwise By the method of images one has: u(t, x) = u d (t, x) where we denote ( x B ) 1 2r σ 2 u d ( t, B2 x = e r(t t) ( N(d + 2 (T t)) ( x B d ± 2 (τ) = ± log ( x B ) ) + (r σ2 2 σ τ ) 1 2r σ 2 N(d 2 (T t)) ) ) τ 47

48 Yield Spreads Curve The yield spread Y (, T) at time zero is defined by e Y (,T)T = P B (, T) P(, T), where P(, T) is the default free zero-coupon bond price given here, in the case of constant interest rate r, by P(, T) = e rt, and P B (, T) = u(, x), leading to the formula Y (, T) = 1 T log (N (d 2 (T)) ( x B ) 1 2r σ 2 N ( d 2 (T))) 48

49 Yield spread in basis points Time to maturity in years Figure 9: The figure shows the sensitivity of the yield spread curve to the volatility level. The ratio of the initial value to the default level x/b is set to 1.3, the interest rate r is 6% and the curves increase with the values of σ: 1%, 11%, 12% and 13% (time to maturity in unit of years, plotted on the log scale; the yield spread is quoted in basis points) 49

50 Yield spread in basis points Time to maturity in years Figure 1: This figure shows the sensitivity of the yield spread to the leverage level. The volatility level is set to 1%, the interest rate is 6%. The curves increases with the decreasing ratios x/b: (1.3, 1.275, 1.25, 1.225, 1.2). 5

51 Challenge: Yields at Short Maturities As stated by Eom et.al. (empirical analysis 21), the challenge for theoretical pricing models is to raise the average predicted spread relative to crude models such as the constant volatility model, without overstating the risks associated with volatility or leverage. Several approaches (within structural models) have been proposed that aims at the modeling in this regard. These include Introduction of jumps (Zhou,...) Stochastic interest rate (Longstaff-Schwartz,...) Imperfect information (on X t ) (Duffie-Lando,...) Imperfect information (on B) (Giesecke) 51

52 Stochastic Volatility Models where we assume that dx t = µx t dt + f(y t )X t dw () t dy t = α(m Y t )dt + ν 2α dw (1) t f non-decreasing, < c 1 f c 2 Invariant distribution of Y : N(m, ν 2 ) independent of α α > is the rate of mean reversion of Y The standard Brownian motions W () and W (1) are correlated d W (), W (1) = ρ 1 dt t 52

53 Stochastic Volatility Models under IP In order to price defaultable bonds under this model for the underlying we rewrite it under a risk neutral measure IP, chosen by the market through the market price of volatility risk Λ 1, as follows dx t = rx t dt + f(y t )X t dw () t, ( dy t = α(m Y t ) ν ) 2αΛ 1 (Y t ) dt + ν 2α dw (1) t. Here W () and W (1) are standard Brownian motions under IP correlated as W () and W (1). We assume that the market price of volatility risk Λ 1 is bounded and a function of y only. 53

54 Yield spread in basis points SV path Time to maturity in years Figure 11: Uncorrelated slowly mean-reverting stochastic volatility: α =.5 and ρ 1 =. 54

55 Yield spread in basis points SV path Time to maturity in years Figure 12: Correlated slowly mean-reverting stochastic volatility: α =.5 and ρ 1 =.5. 55

56 Yield spread in basis points SV path Time to maturity in years Figure 13: Uncorrelated stochastic volatility: α =.5 and ρ 1 =. 56

57 Yield spread in basis points SV path Time to maturity in years Figure 14: Correlated stochastic volatility: α =.5 and ρ 1 =.5. 57

58 Yield spread in basis points SV path Time to maturity in years Figure 15: Uncorrelated fast mean-reverting stochastic volatility: α = 1 and ρ 1 =. 58

59 Yield spread in basis points SV path Time to maturity in years Figure 16: Correlated fast mean-reverting stochastic volatility: α = 1 and ρ 1 =.5. 59

60 Yield spread in basis points SV path Time to maturity in years Figure 17: Highly correlated fast mean-reverting stochastic volatility: α = 1 and ρ 1 =.5. 6

61 Yield spread in basis points SV path Time to maturity in years Figure 18: High leverage correlated fast mean-reverting stochastic volatility: x/b = 1.2, α = 1 and ρ 1 =.5. 61

62 Barrier Options under Stochastic Volatility u(t, x, y) = e r(t t) IE { h(x T )1 {inft s T X s >B} X t = x, Y t = y }, P B (t, T) = 1 {inf s t X s >B}u(t, X t, Y t ). The function u(t, x, y) satisfies for x B the problem ( t + L X,Y r ) u = on x > B, t < T u(t, B) = for any t T u(t, x) = h(x) for x > B where L X,Y is the infinitestimal generator of the process (X, Y ) under IP. 62

63 Leading Order Term under Stochastic Volatility In the regime α large, as in the European case, u(t, x, y) is approximated by u (t, x) which solves the constant volatility problem L BS (σ )u = u (t, B) = on x > B, t < T for any t T u (T, x) = h(x) for x > B where σ is the corrected effective volatility. 63

64 Stochastic Volatility Correction Define the correction u 1(t, x) by L BS (σ )u 1 = V 3 x x u 1(t, B) = ( ) x 2 2 u x 2 on x > B, t < T for any t T u 1(T, x) = for x > B. Remarkably, the small parameter V 3 is the same as in the European case (calibrated to implied volatilities). 64

65 Define Computation of the Correction v 1(t, x) = u 1(t, x) (T t)v 3 x x so that v 1(t, x) solves the simpler problem L BS (σ )v 1 = v 1(t, B) = g(t) ( x 2 2 u ), x 2 on x > B, t < T for any t T v1(t, x) = for x > B ( )) g(t) = V 3 (T t) lim x B (x x x 2 2 u x 2 To summarize we have u(t, x, y) u (t, x) + (T t)v 3 x x with explicit computation in the case h(x) = 1. ( x 2 2 u ) x 2 + v 1(t, x) 65

66 25 Term structure of yield Time to maturity in years Figure 19: The price approximation for σ =.12,r =.,V 3 =.3, x/b =

67 Slow Factor Correction The first correction u (z) 1 (t, x) solves the problem L BS ( σ(z))u (z) 1 = 2 ( V (z) u BS σ + V 1(z)x x ( ubs σ )) on x > B, t < T, u (z) 1 (t, B) = for t T, u (z) 1 (T, x) = for x > B, where u BS is evaluated at (t, x, σ(z)), and V (z) and V 1 (z) are small parameters of order δ, functions of the model parameters, and depending on the current level z of the slow factor. 67

68 7 Fits to Ford Yields Spreads, 12/9/4 6 Yield Spreads (%) Black Cox Stochastic Volatility Data Time to maturity Figure 2: Black-Cox and two-factor stochastic volatility fits to Ford yield spread data. The short rate is fixed at r =.25. The fitted Black-Cox parameters are σ =.35 and x/b = The fitted stochastic volatility parameters are σ =.385, corresponding to R 2 =.129, R 3 =.12, R 1 =.16 and R =.8. 68

69 1 Add R 3 1 Add R Yield Spreads (%) Add R 1 1 Add R 2 σ * Yield Spreads (%) Time to maturity Time to maturity 69

70 6 Fit to IBM Yield Spreads 12/1/4 5 Yield Spread (%) Black Cox Stochastic Volatility Data Time to maturity (years) Figure 21: Black-Cox and two-factor stochastic volatility fits to IBM yield spread data. The short rate is fixed at r =.25. The fitted Black-Cox parameters are σ =.35 and x/b = 3. The fitted stochastic volatility parameters are σ =.36, corresponding to R 2 =.355, R 3 =.112, R 1 =.13 and R =.45. 7

Applications to Fixed Income and Credit Markets

Applications to Fixed Income and Credit Markets Applications to Fixed Income and Credit Markets Jean-Pierre Fouque University of California Santa Barbara 28 Daiwa Lecture Series July 29 - August 1, 28 Kyoto University, Kyoto 1 Fixed Income Perturbations

More information

Calibration to Implied Volatility Data

Calibration to Implied Volatility Data Calibration to Implied Volatility Data Jean-Pierre Fouque University of California Santa Barbara 2008 Daiwa Lecture Series July 29 - August 1, 2008 Kyoto University, Kyoto 1 Calibration Formulas The implied

More information

Multiscale Stochastic Volatility Models

Multiscale Stochastic Volatility Models Multiscale Stochastic Volatility Models Jean-Pierre Fouque University of California Santa Barbara 6th World Congress of the Bachelier Finance Society Toronto, June 25, 2010 Multiscale Stochastic Volatility

More information

Stochastic Volatility Effects on Defaultable Bonds

Stochastic Volatility Effects on Defaultable Bonds Stochastic Volatility Effects on Defaultable Bonds Jean-Pierre Fouque Ronnie Sircar Knut Sølna December 24; revised October 24, 25 Abstract We study the effect of introducing stochastic volatility in the

More information

Multiscale Stochastic Volatility Models Heston 1.5

Multiscale Stochastic Volatility Models Heston 1.5 Multiscale Stochastic Volatility Models Heston 1.5 Jean-Pierre Fouque Department of Statistics & Applied Probability University of California Santa Barbara Modeling and Managing Financial Risks Paris,

More information

MULTISCALE STOCHASTIC VOLATILITY ASYMPTOTICS

MULTISCALE STOCHASTIC VOLATILITY ASYMPTOTICS MULTISCALE STOCHASTIC VOLATILITY ASYMPTOTICS JEAN-PIERRE FOUQUE, GEORGE PAPANICOLAOU, RONNIE SIRCAR, AND KNUT SOLNA Abstract. In this paper we propose to use a combination of regular and singular perturbations

More information

Stochastic Volatility Modeling

Stochastic Volatility Modeling Stochastic Volatility Modeling Jean-Pierre Fouque University of California Santa Barbara 28 Daiwa Lecture Series July 29 - August 1, 28 Kyoto University, Kyoto 1 References: Derivatives in Financial Markets

More information

Multiname and Multiscale Default Modeling

Multiname and Multiscale Default Modeling Multiname and Multiscale Default Modeling Jean-Pierre Fouque University of California Santa Barbara Joint work with R. Sircar (Princeton) and K. Sølna (UC Irvine) Special Semester on Stochastics with Emphasis

More information

Evaluation of compound options using perturbation approximation

Evaluation of compound options using perturbation approximation Evaluation of compound options using perturbation approximation Jean-Pierre Fouque and Chuan-Hsiang Han April 11, 2004 Abstract This paper proposes a fast, efficient and robust way to compute the prices

More information

Calibration of Stock Betas from Skews of Implied Volatilities

Calibration of Stock Betas from Skews of Implied Volatilities Calibration of Stock Betas from Skews of Implied Volatilities Jean-Pierre Fouque Eli Kollman January 4, 010 Abstract We develop call option price approximations for both the market index and an individual

More information

Asian Options under Multiscale Stochastic Volatility

Asian Options under Multiscale Stochastic Volatility Contemporary Mathematics Asian Options under Multiscale Stochastic Volatility Jean-Pierre Fouque and Chuan-Hsiang Han Abstract. We study the problem of pricing arithmetic Asian options when the underlying

More information

Singular Perturbations in Option Pricing

Singular Perturbations in Option Pricing Singular Perturbations in Option Pricing J.-P. Fouque G. Papanicolaou R. Sircar K. Solna March 4, 2003 Abstract After the celebrated Black-Scholes formula for pricing call options under constant volatility,

More information

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment

Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Variance Reduction for Monte Carlo Simulation in a Stochastic Volatility Environment Jean-Pierre Fouque Tracey Andrew Tullie December 11, 21 Abstract We propose a variance reduction method for Monte Carlo

More information

Timing the Smile. Jean-Pierre Fouque George Papanicolaou Ronnie Sircar Knut Sølna. October 9, 2003

Timing the Smile. Jean-Pierre Fouque George Papanicolaou Ronnie Sircar Knut Sølna. October 9, 2003 Timing the Smile Jean-Pierre Fouque George Papanicolaou Ronnie Sircar Knut Sølna October 9, 23 Abstract Within the general framework of stochastic volatility, the authors propose a method, which is consistent

More information

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque)

Rohini Kumar. Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) Small time asymptotics for fast mean-reverting stochastic volatility models Statistics and Applied Probability, UCSB (Joint work with J. Feng and J.-P. Fouque) March 11, 2011 Frontier Probability Days,

More information

Option Pricing Under a Stressed-Beta Model

Option Pricing Under a Stressed-Beta Model Option Pricing Under a Stressed-Beta Model Adam Tashman in collaboration with Jean-Pierre Fouque University of California, Santa Barbara Department of Statistics and Applied Probability Center for Research

More information

Calibration of Stock Betas from Skews of Implied Volatilities

Calibration of Stock Betas from Skews of Implied Volatilities Calibration of Stock Betas from Skews of Implied Volatilities Jean-Pierre Fouque University of California Santa Barbara Joint work with Eli Kollman (Ph.D. student at UCSB) New Directions in Financial Mathematics

More information

MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES

MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES MULTISCALE STOCHASTIC VOLATILITY FOR EQUITY, INTEREST RATE, AND CREDIT DERIVATIVES Building upon the ideas introduced in their previous book, Derivatives in Financial Markets with Stochastic Volatility,

More information

Structural Models of Credit Risk and Some Applications

Structural Models of Credit Risk and Some Applications Structural Models of Credit Risk and Some Applications Albert Cohen Actuarial Science Program Department of Mathematics Department of Statistics and Probability albert@math.msu.edu August 29, 2018 Outline

More information

Pricing Asian Options with Stochastic Volatility

Pricing Asian Options with Stochastic Volatility Pricing Asian Options with Stochastic Volatility Jean-Pierre Fouque and Chuan-Hsiang Han June 5, 23 Abstract In this paper, we generalize the recently developed dimension reduction technique of Vecer for

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

M5MF6. Advanced Methods in Derivatives Pricing

M5MF6. Advanced Methods in Derivatives Pricing Course: Setter: M5MF6 Dr Antoine Jacquier MSc EXAMINATIONS IN MATHEMATICS AND FINANCE DEPARTMENT OF MATHEMATICS April 2016 M5MF6 Advanced Methods in Derivatives Pricing Setter s signature...........................................

More information

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations

The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations The Use of Importance Sampling to Speed Up Stochastic Volatility Simulations Stan Stilger June 6, 1 Fouque and Tullie use importance sampling for variance reduction in stochastic volatility simulations.

More information

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS

BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS BIRKBECK (University of London) MSc EXAMINATION FOR INTERNAL STUDENTS MSc FINANCIAL ENGINEERING DEPARTMENT OF ECONOMICS, MATHEMATICS AND STATIS- TICS PRICING EMMS014S7 Tuesday, May 31 2011, 10:00am-13.15pm

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

θ(t ) = T f(0, T ) + σ2 T

θ(t ) = T f(0, T ) + σ2 T 1 Derivatives Pricing and Financial Modelling Andrew Cairns: room M3.08 E-mail: A.Cairns@ma.hw.ac.uk Tutorial 10 1. (Ho-Lee) Let X(T ) = T 0 W t dt. (a) What is the distribution of X(T )? (b) Find E[exp(

More information

The stochastic calculus

The stochastic calculus Gdansk A schedule of the lecture Stochastic differential equations Ito calculus, Ito process Ornstein - Uhlenbeck (OU) process Heston model Stopping time for OU process Stochastic differential equations

More information

Two and Three factor models for Spread Options Pricing

Two and Three factor models for Spread Options Pricing Two and Three factor models for Spread Options Pricing COMMIDITIES 2007, Birkbeck College, University of London January 17-19, 2007 Sebastian Jaimungal, Associate Director, Mathematical Finance Program,

More information

Credit Risk using Time Changed Brownian Motions

Credit Risk using Time Changed Brownian Motions Credit Risk using Time Changed Brownian Motions Tom Hurd Mathematics and Statistics McMaster University Joint work with Alexey Kuznetsov (New Brunswick) and Zhuowei Zhou (Mac) 2nd Princeton Credit Conference

More information

Path Dependent British Options

Path Dependent British Options Path Dependent British Options Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 18th August 2009 (PDE & Mathematical Finance

More information

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given:

(1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (1) Consider a European call option and a European put option on a nondividend-paying stock. You are given: (i) The current price of the stock is $60. (ii) The call option currently sells for $0.15 more

More information

Lecture 15: Exotic Options: Barriers

Lecture 15: Exotic Options: Barriers Lecture 15: Exotic Options: Barriers Dr. Hanqing Jin Mathematical Institute University of Oxford Lecture 15: Exotic Options: Barriers p. 1/10 Barrier features For any options with payoff ξ at exercise

More information

Lecture 3: Asymptotics and Dynamics of the Volatility Skew

Lecture 3: Asymptotics and Dynamics of the Volatility Skew Lecture 3: Asymptotics and Dynamics of the Volatility Skew Jim Gatheral, Merrill Lynch Case Studies in Financial Modelling Course Notes, Courant Institute of Mathematical Sciences, Fall Term, 2001 I am

More information

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models

Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models Stock Loan Valuation Under Brownian-Motion Based and Markov Chain Stock Models David Prager 1 1 Associate Professor of Mathematics Anderson University (SC) Based on joint work with Professor Qing Zhang,

More information

Research Article Pricing Collar Options with Stochastic Volatility

Research Article Pricing Collar Options with Stochastic Volatility Hindawi Discrete Dynamics in Nature and Society Volume 2017, Article ID 9673630, 7 pages https://doi.org/10.1155/2017/9673630 Research Article Pricing Collar Options with Stochastic Volatility Pengshi

More information

The British Russian Option

The British Russian Option The British Russian Option Kristoffer J Glover (Joint work with G. Peskir and F. Samee) School of Finance and Economics University of Technology, Sydney 25th June 2010 (6th World Congress of the BFS, Toronto)

More information

A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES

A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES Proceedings of ALGORITMY 01 pp. 95 104 A THREE-FACTOR CONVERGENCE MODEL OF INTEREST RATES BEÁTA STEHLÍKOVÁ AND ZUZANA ZÍKOVÁ Abstract. A convergence model of interest rates explains the evolution of the

More information

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing

Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing Lecture Note 8 of Bus 41202, Spring 2017: Stochastic Diffusion Equation & Option Pricing We shall go over this note quickly due to time constraints. Key concept: Ito s lemma Stock Options: A contract giving

More information

Asymptotic Method for Singularity in Path-Dependent Option Pricing

Asymptotic Method for Singularity in Path-Dependent Option Pricing Asymptotic Method for Singularity in Path-Dependent Option Pricing Sang-Hyeon Park, Jeong-Hoon Kim Dept. Math. Yonsei University June 2010 Singularity in Path-Dependent June 2010 Option Pricing 1 / 21

More information

Asset-based Estimates for Default Probabilities for Commercial Banks

Asset-based Estimates for Default Probabilities for Commercial Banks Asset-based Estimates for Default Probabilities for Commercial Banks Statistical Laboratory, University of Cambridge September 2005 Outline Structural Models Structural Models Model Inputs and Outputs

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model CIRJE-F-873 An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Osaka University Akihiko Takahashi University of Tokyo Toshihiro Yamada Graduate School

More information

Option Pricing Under a Stressed-Beta Model

Option Pricing Under a Stressed-Beta Model Noname manuscript No. (will be inserted by the editor) Option Pricing Under a Stressed-Beta Model Jean-Pierre Fouque Adam P. Tashman the date of receipt and acceptance should be inserted later Abstract

More information

PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY

PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 4, Winter 009 PRICING TIMER OPTIONS UNDER FAST MEAN-REVERTING STOCHASTIC VOLATILITY DAVID SAUNDERS ABSTRACT. Timer options are derivative securities

More information

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions

Definition Pricing Risk management Second generation barrier options. Barrier Options. Arfima Financial Solutions Arfima Financial Solutions Contents Definition 1 Definition 2 3 4 Contenido Definition 1 Definition 2 3 4 Definition Definition: A barrier option is an option on the underlying asset that is activated

More information

Credit Risk : Firm Value Model

Credit Risk : Firm Value Model Credit Risk : Firm Value Model Prof. Dr. Svetlozar Rachev Institute for Statistics and Mathematical Economics University of Karlsruhe and Karlsruhe Institute of Technology (KIT) Prof. Dr. Svetlozar Rachev

More information

Local Volatility Dynamic Models

Local Volatility Dynamic Models René Carmona Bendheim Center for Finance Department of Operations Research & Financial Engineering Princeton University Columbia November 9, 27 Contents Joint work with Sergey Nadtochyi Motivation 1 Understanding

More information

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model

An Asymptotic Expansion Formula for Up-and-Out Barrier Option Price under Stochastic Volatility Model An Asymptotic Expansion Formula for Up-and-Out Option Price under Stochastic Volatility Model Takashi Kato Akihiko Takahashi Toshihiro Yamada arxiv:32.336v [q-fin.cp] 4 Feb 23 December 3, 22 Abstract This

More information

Introduction to Financial Mathematics

Introduction to Financial Mathematics Department of Mathematics University of Michigan November 7, 2008 My Information E-mail address: marymorj (at) umich.edu Financial work experience includes 2 years in public finance investment banking

More information

( ) since this is the benefit of buying the asset at the strike price rather

( ) since this is the benefit of buying the asset at the strike price rather Review of some financial models for MAT 483 Parity and Other Option Relationships The basic parity relationship for European options with the same strike price and the same time to expiration is: C( KT

More information

Recent Advances in Fractional Stochastic Volatility Models

Recent Advances in Fractional Stochastic Volatility Models Recent Advances in Fractional Stochastic Volatility Models Alexandra Chronopoulou Industrial & Enterprise Systems Engineering University of Illinois at Urbana-Champaign IPAM National Meeting of Women in

More information

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours

NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 MAS3904. Stochastic Financial Modelling. Time allowed: 2 hours NEWCASTLE UNIVERSITY SCHOOL OF MATHEMATICS, STATISTICS & PHYSICS SEMESTER 1 SPECIMEN 2 Stochastic Financial Modelling Time allowed: 2 hours Candidates should attempt all questions. Marks for each question

More information

Multiscale Stochastic Volatility Model for Derivatives on Futures

Multiscale Stochastic Volatility Model for Derivatives on Futures Multiscale Stochastic Volatility Model for Derivatives on Futures Jean-Pierre Fouque, Yuri F. Saporito, Jorge P. Zubelli arxiv:1311.4249v1 [q-fin.cp] 18 Nov 2013 June 10, 2018 Abstract In this paper we

More information

Advanced topics in continuous time finance

Advanced topics in continuous time finance Based on readings of Prof. Kerry E. Back on the IAS in Vienna, October 21. Advanced topics in continuous time finance Mag. Martin Vonwald (martin@voni.at) November 21 Contents 1 Introduction 4 1.1 Martingale.....................................

More information

A Poor Man s Guide. Quantitative Finance

A Poor Man s Guide. Quantitative Finance Sachs A Poor Man s Guide To Quantitative Finance Emanuel Derman October 2002 Email: emanuel@ederman.com Web: www.ederman.com PoorMansGuideToQF.fm September 30, 2002 Page 1 of 17 Sachs Summary Quantitative

More information

Introduction Credit risk

Introduction Credit risk A structural credit risk model with a reduced-form default trigger Applications to finance and insurance Mathieu Boudreault, M.Sc.,., F.S.A. Ph.D. Candidate, HEC Montréal Montréal, Québec Introduction

More information

Exact Sampling of Jump-Diffusion Processes

Exact Sampling of Jump-Diffusion Processes 1 Exact Sampling of Jump-Diffusion Processes and Dmitry Smelov Management Science & Engineering Stanford University Exact Sampling of Jump-Diffusion Processes 2 Jump-Diffusion Processes Ubiquitous in finance

More information

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option

A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option A Moment Matching Approach To The Valuation Of A Volume Weighted Average Price Option Antony Stace Department of Mathematics and MASCOS University of Queensland 15th October 2004 AUSTRALIAN RESEARCH COUNCIL

More information

Unified Credit-Equity Modeling

Unified Credit-Equity Modeling Unified Credit-Equity Modeling Rafael Mendoza-Arriaga Based on joint research with: Vadim Linetsky and Peter Carr The University of Texas at Austin McCombs School of Business (IROM) Recent Advancements

More information

Investors Attention and Stock Market Volatility

Investors Attention and Stock Market Volatility Investors Attention and Stock Market Volatility Daniel Andrei Michael Hasler Princeton Workshop, Lausanne 2011 Attention and Volatility Andrei and Hasler Princeton Workshop 2011 0 / 15 Prerequisites Attention

More information

A Simple Model of Credit Spreads with Incomplete Information

A Simple Model of Credit Spreads with Incomplete Information A Simple Model of Credit Spreads with Incomplete Information Chuang Yi McMaster University April, 2007 Joint work with Alexander Tchernitser from Bank of Montreal (BMO). The opinions expressed here are

More information

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets

Chapter 15: Jump Processes and Incomplete Markets. 1 Jumps as One Explanation of Incomplete Markets Chapter 5: Jump Processes and Incomplete Markets Jumps as One Explanation of Incomplete Markets It is easy to argue that Brownian motion paths cannot model actual stock price movements properly in reality,

More information

Credit Derivatives and Risk Aversion

Credit Derivatives and Risk Aversion Credit Derivatives and Risk Aversion Tim Leung Ronnie Sircar Thaleia Zariphopoulou October 27, revised December 27 Abstract We discuss the valuation of credit derivatives in extreme regimes such as when

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets Liuren Wu ( c ) The Black-Merton-Scholes Model colorhmoptions Markets 1 / 18 The Black-Merton-Scholes-Merton (BMS) model Black and Scholes (1973) and Merton

More information

A Consistent Pricing Model for Index Options and Volatility Derivatives

A Consistent Pricing Model for Index Options and Volatility Derivatives A Consistent Pricing Model for Index Options and Volatility Derivatives 6th World Congress of the Bachelier Society Thomas Kokholm Finance Research Group Department of Business Studies Aarhus School of

More information

13.3 A Stochastic Production Planning Model

13.3 A Stochastic Production Planning Model 13.3. A Stochastic Production Planning Model 347 From (13.9), we can formally write (dx t ) = f (dt) + G (dz t ) + fgdz t dt, (13.3) dx t dt = f(dt) + Gdz t dt. (13.33) The exact meaning of these expressions

More information

Supplementary Appendix to The Risk Premia Embedded in Index Options

Supplementary Appendix to The Risk Premia Embedded in Index Options Supplementary Appendix to The Risk Premia Embedded in Index Options Torben G. Andersen Nicola Fusari Viktor Todorov December 214 Contents A The Non-Linear Factor Structure of Option Surfaces 2 B Additional

More information

Pricing Convertible Bonds under the First-Passage Credit Risk Model

Pricing Convertible Bonds under the First-Passage Credit Risk Model Pricing Convertible Bonds under the First-Passage Credit Risk Model Prof. Tian-Shyr Dai Department of Information Management and Finance National Chiao Tung University Joint work with Prof. Chuan-Ju Wang

More information

Local vs Non-local Forward Equations for Option Pricing

Local vs Non-local Forward Equations for Option Pricing Local vs Non-local Forward Equations for Option Pricing Rama Cont Yu Gu Abstract When the underlying asset is a continuous martingale, call option prices solve the Dupire equation, a forward parabolic

More information

Lecture 3: Review of mathematical finance and derivative pricing models

Lecture 3: Review of mathematical finance and derivative pricing models Lecture 3: Review of mathematical finance and derivative pricing models Xiaoguang Wang STAT 598W January 21th, 2014 (STAT 598W) Lecture 3 1 / 51 Outline 1 Some model independent definitions and principals

More information

Real-World Quantitative Finance

Real-World Quantitative Finance Sachs Real-World Quantitative Finance (A Poor Man s Guide To What Physicists Do On Wall St.) Emanuel Derman Goldman, Sachs & Co. March 21, 2002 Page 1 of 16 Sachs Introduction Models in Physics Models

More information

Approximation Methods in Derivatives Pricing

Approximation Methods in Derivatives Pricing Approximation Methods in Derivatives Pricing Minqiang Li Bloomberg LP September 24, 2013 1 / 27 Outline of the talk A brief overview of approximation methods Timer option price approximation Perpetual

More information

Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models

Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models MATHEMATICAL OPTIMIZATION Mathematical Methods In Economics And Industry 007 June 3 7, 007, Herl any, Slovak Republic Averaged bond prices for Fong-Vasicek and the generalized Vasicek interest rates models

More information

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours

KØBENHAVNS UNIVERSITET (Blok 2, 2011/2012) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This question paper consists of 3 printed pages FinKont KØBENHAVNS UNIVERSITET (Blok 2, 211/212) Naturvidenskabelig kandidateksamen Continuous time finance (FinKont) TIME ALLOWED : 3 hours This exam paper

More information

Constructing Markov models for barrier options

Constructing Markov models for barrier options Constructing Markov models for barrier options Gerard Brunick joint work with Steven Shreve Department of Mathematics University of Texas at Austin Nov. 14 th, 2009 3 rd Western Conference on Mathematical

More information

1 Implied Volatility from Local Volatility

1 Implied Volatility from Local Volatility Abstract We try to understand the Berestycki, Busca, and Florent () (BBF) result in the context of the work presented in Lectures and. Implied Volatility from Local Volatility. Current Plan as of March

More information

Multi-dimensional Term Structure Models

Multi-dimensional Term Structure Models Multi-dimensional Term Structure Models We will focus on the affine class. But first some motivation. A generic one-dimensional model for zero-coupon yields, y(t; τ), looks like this dy(t; τ) =... dt +

More information

Robust Hedging of Options on a Leveraged Exchange Traded Fund

Robust Hedging of Options on a Leveraged Exchange Traded Fund Robust Hedging of Options on a Leveraged Exchange Traded Fund Alexander M. G. Cox Sam M. Kinsley University of Bath Recent Advances in Financial Mathematics, Paris, 10th January, 2017 A. M. G. Cox, S.

More information

1.1 Basic Financial Derivatives: Forward Contracts and Options

1.1 Basic Financial Derivatives: Forward Contracts and Options Chapter 1 Preliminaries 1.1 Basic Financial Derivatives: Forward Contracts and Options A derivative is a financial instrument whose value depends on the values of other, more basic underlying variables

More information

Optimal robust bounds for variance options and asymptotically extreme models

Optimal robust bounds for variance options and asymptotically extreme models Optimal robust bounds for variance options and asymptotically extreme models Alexander Cox 1 Jiajie Wang 2 1 University of Bath 2 Università di Roma La Sapienza Advances in Financial Mathematics, 9th January,

More information

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL

AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL AN ANALYTICALLY TRACTABLE UNCERTAIN VOLATILITY MODEL FABIO MERCURIO BANCA IMI, MILAN http://www.fabiomercurio.it 1 Stylized facts Traders use the Black-Scholes formula to price plain-vanilla options. An

More information

The Black-Scholes Model

The Black-Scholes Model The Black-Scholes Model Liuren Wu Options Markets (Hull chapter: 12, 13, 14) Liuren Wu ( c ) The Black-Scholes Model colorhmoptions Markets 1 / 17 The Black-Scholes-Merton (BSM) model Black and Scholes

More information

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models

Large Deviations and Stochastic Volatility with Jumps: Asymptotic Implied Volatility for Affine Models Large Deviations and Stochastic Volatility with Jumps: TU Berlin with A. Jaquier and A. Mijatović (Imperial College London) SIAM conference on Financial Mathematics, Minneapolis, MN July 10, 2012 Implied

More information

18. Diffusion processes for stocks and interest rates. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture:

18. Diffusion processes for stocks and interest rates. MA6622, Ernesto Mordecki, CityU, HK, References for this Lecture: 18. Diffusion processes for stocks and interest rates MA6622, Ernesto Mordecki, CityU, HK, 2006. References for this Lecture: P. Willmot, Paul Willmot on Quantitative Finance. Volume 1, Wiley, (2000) A.

More information

Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models

Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models Samuel Hikspoors and Sebastian Jaimungal a a Department of Statistics and Mathematical Finance Program, University of

More information

Volatility Smiles and Yield Frowns

Volatility Smiles and Yield Frowns Volatility Smiles and Yield Frowns Peter Carr NYU IFS, Chengdu, China, July 30, 2018 Peter Carr (NYU) Volatility Smiles and Yield Frowns 7/30/2018 1 / 35 Interest Rates and Volatility Practitioners and

More information

Pricing Barrier Options under Local Volatility

Pricing Barrier Options under Local Volatility Abstract Pricing Barrier Options under Local Volatility Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 16 November 2002 We study pricing under the local volatility. Our research is mainly

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Monte Carlo Methods for Uncertainty Quantification

Monte Carlo Methods for Uncertainty Quantification Monte Carlo Methods for Uncertainty Quantification Mike Giles Mathematical Institute, University of Oxford Contemporary Numerical Techniques Mike Giles (Oxford) Monte Carlo methods 2 1 / 24 Lecture outline

More information

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model

Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model Monte Carlo Simulation of a Two-Factor Stochastic Volatility Model asymptotic approximation formula for the vanilla European call option price. A class of multi-factor volatility models has been introduced

More information

Stochastic Volatility

Stochastic Volatility Stochastic Volatility A Gentle Introduction Fredrik Armerin Department of Mathematics Royal Institute of Technology, Stockholm, Sweden Contents 1 Introduction 2 1.1 Volatility................................

More information

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY

Exploring Volatility Derivatives: New Advances in Modelling. Bruno Dupire Bloomberg L.P. NY Exploring Volatility Derivatives: New Advances in Modelling Bruno Dupire Bloomberg L.P. NY bdupire@bloomberg.net Global Derivatives 2005, Paris May 25, 2005 1. Volatility Products Historical Volatility

More information

Robust Pricing and Hedging of Options on Variance

Robust Pricing and Hedging of Options on Variance Robust Pricing and Hedging of Options on Variance Alexander Cox Jiajie Wang University of Bath Bachelier 21, Toronto Financial Setting Option priced on an underlying asset S t Dynamics of S t unspecified,

More information

4 Stochastic Volatility Correction for American Put Review of European Options Asymptotics American Options Asymptotic

4 Stochastic Volatility Correction for American Put Review of European Options Asymptotics American Options Asymptotic From the Implied Volatility Skew to a Robust Correction to Black-Scholes American Option Prices Jean-Pierre Fouque Λ George Papanicolaou y K. Ronnie Sircar z March 7, 2 Abstract We describe a robust correction

More information

One-Factor Models { 1 Key features of one-factor (equilibrium) models: { All bond prices are a function of a single state variable, the short rate. {

One-Factor Models { 1 Key features of one-factor (equilibrium) models: { All bond prices are a function of a single state variable, the short rate. { Fixed Income Analysis Term-Structure Models in Continuous Time Multi-factor equilibrium models (general theory) The Brennan and Schwartz model Exponential-ane models Jesper Lund April 14, 1998 1 Outline

More information

Advances in Valuation Adjustments. Topquants Autumn 2015

Advances in Valuation Adjustments. Topquants Autumn 2015 Advances in Valuation Adjustments Topquants Autumn 2015 Quantitative Advisory Services EY QAS team Modelling methodology design and model build Methodology and model validation Methodology and model optimisation

More information

Market interest-rate models

Market interest-rate models Market interest-rate models Marco Marchioro www.marchioro.org November 24 th, 2012 Market interest-rate models 1 Lecture Summary No-arbitrage models Detailed example: Hull-White Monte Carlo simulations

More information

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing

Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Linearity-Generating Processes, Unspanned Stochastic Volatility, and Interest-Rate Option Pricing Liuren Wu, Baruch College Joint work with Peter Carr and Xavier Gabaix at New York University Board of

More information

European call option with inflation-linked strike

European call option with inflation-linked strike Mathematical Statistics Stockholm University European call option with inflation-linked strike Ola Hammarlid Research Report 2010:2 ISSN 1650-0377 Postal address: Mathematical Statistics Dept. of Mathematics

More information

Calculating Implied Volatility

Calculating Implied Volatility Statistical Laboratory University of Cambridge University of Cambridge Mathematics and Big Data Showcase 20 April 2016 How much is an option worth? A call option is the right, but not the obligation, to

More information