Finite difference method for the Black and Scholes PDE (TP-1)

Size: px
Start display at page:

Download "Finite difference method for the Black and Scholes PDE (TP-1)"

Transcription

1 Numerical metods for PDE in Finance - ENSTA - S1-1/MMMEF Finite difference metod for te Black and Scoles PDE (TP-1) November Te Euler Forward sceme We look for a numerical approximation of te European put function v = v(t, s), t [0, T ], s [0, S max ]. It satisfies in first approximation te Black and Scoles backward PDE on te truncated domain Ω = [S min, S max ] : s2 2 s 2 v rs s v + rv = 0, t (0, T ), s (S min, S max ) t v σ2 2 v(t, S min ) = v l (t) Ke rt S min, t (0, T ) v(t, S max ) = v r (t) 0, t (0, T ) v(0, s) = ϕ(s) := (K s) +, s (S min, S max ). On prendra les constantes numériques suivantes : K = 100, S min = 0, S max = 200, T = 1, σ = 0.2, r = 0.1 In particular, we aim at computing v(t, s) at final time t = T. We first introduce a discrete mes as follows. Let := Smax S min I+1 be (spatial) mes step, and t := T N be te time step. Ten s := S min +, = 0,..., I + 1 are te mes points, and t n = n t, n = 0,..., N te time mes. We are looking for U n, an approximation of v(t n, s ). For any function v C 2 (or v C 3 for (4)), we recall te following approximations, as 0, v (s ) = v(s ) v(s 1 ) v (s ) = v(s +1) v(s ) v (s ) = v(s +1) v(s 1 ) (1) + O() (2) + O() (3) + O( 2 ). (4) We terefore obtain several possible approximations by finite differences for te first order derivative : S v(t n, s ) U n U n 1 S v(t n, s ) U n +1 U n S v(t n, s ) U n +1 U n 1 (backward difference approximation) (5) (forward difference approximation) (6) (centered difference) (7) 1

2 Te first two approximations are said to be consistent of order 1 (in space), wile te second one is consistent of order 2. We also recall te approximation wic is consitent of order 2 in space. 2 SSv(t n, s ) U n 1 + 2U n U n +1 2, (8) Hence we obtain te so-called Euler Forward sceme (or Explicit Euler sceme), abreviated EE using te centered approximation, as follows : U n+1 U n t + σ2 2 s2 U n 1 + 2U n U n +1 2 rs U n +1 U n 1 + ru n = 0 n = 0,..., N 1, = 1,..., I U n 0 = v l (t n ) Ke rtn S min, n = 0,..., N (9) U n I+1 = v r (t n ) 0, U 0 = ϕ(s ) (K s ) +, n = 0,..., N = 1,..., I Let us remark tat we ave taken = 1 and = I as extremal indices in. For = 1, te sceme utilizes te known value U n 0 := v l(t n ) (left boundary value). For = I, te sceme utilizes te known value U n I+1 := v r(t n ) (rigt boundary value). 2 Programming Euler Forward 2.1 Preliminaries. We coose to work wit te unkown te vector corresponding to (v(t n, s )) =1,...,I : U n = U n 1. U n I. We would like to write (9) under te vector form as follows : U n+1 U n + AU n + q(t n ) = 0, (10) t were A is a square matrix of dimension I and q(t) is a column vector of size I. Let us denote α := σ2 s 2 2 2, β := r s. We look for A and q(t) suc tat ( α i + β i )U n i 1 + (2α i + r)u n i + ( α i β i )U n i+1 (AU + q(t n )) i. 2

3 By identification we see tat A is a tridiagonal matrix 2α 1 + r α 1 β 1 0 α 2 + β 2 2α 2 + r α 2 β A := α i + β i 2α i + r α i β i α I + β I 2α I + r and q(t) will contain te known boundary values U 0 and U n+1 : ( α 1 + β 1 )v l (t) q(t) := ( α I β I )v r (t) 2.2 Getting into te program. a) Download te working program 1 (tp1.m if using Matlab, or tp1.sci if using Scilab). Tis program as some lines to be completed in order to work properly. In te case of te matlab program, you will also ave to download oter function files BS.m and ploot.m (you can also take te solution file tp1sol.m) b) Ceck te program for te payoff function u0, ul (for v l ) and ur (for v r ) and program tem correctly. (notice tat te instruction y=max(k-s,0) works for s vector, K scalar, and return a vector of same size as s.) c) In te section MESH, complete te value of te mes step and program te vector s containing te (s ) 1 I values. Typically it sould look like : dt=t/n; =(Smax-Smin)/(I+1); s=smin+ (1:I) *; // column vector (s 1,..., s I ) T d) Program te matrix A and test te program. Under te matlab command window, type tp1. (Under Scilab, type exec tp1.sci or exec( tp1.sci,-1)) e) Program te function q(t). For instance in matlab : q [(-alpa(1) + bet(1))* ul(t); zeros(i-2,1); (-alpa(end) - bet(end))* ur(t)]; In Scilab tis may look like function y=ul(t); y=k*exp(-r*t); endfunction function y=ur(t); y=0; endfunction; function y=q(t) y=zeros(s); // vector of zeros wit same size as te s vector y(1)= (-a(1)+b(1))*ul(t); u($)= (-a($)-b($))*ur(t); endfunction 1. See ttp ://people.mat.ussieu.fr/ boka/enseignement/2015/s11/ 3

4 2.2 Euler Forward sceme (or Euler Explicit sceme) a) Program te explicit form of te vector U n+1, in terms of U n, in te main loop, using te matrix A and te function q. In te end, it sould look like (in matlab) case EE P = (Id - dt*a)*p - dt*q(t); Note tat te grapic function ploot also plots te exact Black and Scoles formula (see te given function BS in te file BS.m). b) Correct te lign errli=0 in te main loop, in order to compute correctly te maximum norm. between te sceme values and te Black and Scoles values : U V BS = max 1 i I U i V BS (s i ) 2.3 Solution. A solution file is given in tp1sol.m 3 First numerical tests a) Test te Euler forward sceme (EE). First fix N = 10 and take I = 10, 20, 50,.... Ten take te following N = I values : 10, 20, 50, 100. Observe tat : - te sceme is not always numerically stable - it does not always give a positive solution (i.e. we do not always ave U n 0 n, ). b) Try to understand te origin of te oscillations wen tey occur. One sould look at te amplification matrix defined as B := I d ta (Te coefficients of B are tey positive? Do tey ave a modulus smaller tan 1?) c) Fill in te CFL number defined ere as µ := t 2 /( 1 σ 2 S max 2 ) and print it. Ceck tat tere is no stability problem wen ν is sufficiently small. d) In te case wen σ = and for instance wit N = 10 and I = 50 : observe tat te sceme is stable but tat te solution given by te sceme is not positive. e) Order of te sceme. We first consider te following values of I and of N : I = 10, 20, 40, 80, 160, and N = I 2 /10 (tat is, N = 10, 40,...). Tis is in order to ave t 2. Fill in te following error table and compute te corresponding (spatial) order of te metod. More precisely, if te error is e k for a given parameter I = I k, we will compute te order at step k by te formula α k := log(e k 1/e k ) log( k 1 / k ) log(e k 1/e k ). log(2) Te idea is to try to detect a beavior of te form e k = C α k, were C est a constant and were k is te spatial mes size corresponding to I k. Te numerical (spatial) order sould be close to two. But ere setting N const I 2 is costly in terms of number of operations. More precisely, since t = const 2 one can see tat error also beaves as O( t), tat is, a first order error beavior wit respect to te time discretisation. 4

5 I N e k order α k Tis motivates te use of implicit scemes in order to avoid te time-step condition (or CFL condition). Exercice : backward and forward difference approximations a) Program in te same way te oter approximations (backward differences / décentrage droit : DROIT and te forward differences - décentrage gauce GAUCHE ). Te parameter CENTRAGE is defined at te begining of te program (section NUMERICAL DATA) and determines te type of finite difference approximation tat is used. b) Using te forward differences, fix temporarily σ = and N = 10, I = 50, and ceck tat now te solution keeps positive. c) Using te backward differences, fix temporarily σ = and N = 10, I = 50, and ceck tat now te numerical solution is unstable (understand te problem by looking at te coefficients of te amplification matrix). 4 Implicit Euler sceme (EI) Te CFL constraint imposes some restriction on te time step t. Implicit scemes may allow us to get rid of tis restriction. For instance, te implicit euler sceme, ereafter abrieviated EI (for Frenc Euler Implicit ), wit centered difference approximation for te first spatial derivatives reads U n+1 U n t + σ2 2 s2 U n+1 1 n+1 + 2U U+1 n+1 U+1 n+1 2 rs U 1 n+1 + ru n+1 = 0 n = 0,..., N 1, = 1,..., I U0 n+1 = v l (t n+1 ) Ke rt n+1 S min, n = 0,..., N 1 (11) U n+1 I+1 = v r(t n+1 ) 0, n = 0,..., N 1 U 0 = (K s ), = 1,..., I a) Write te sceme in vector form, in analogy wit (10). b) Program EI : set te parameter SCHEMA= EI at te begining of te program, and complete accordingly, in te main loop, te part case EI... Note tat in order to solve a linear system of te form Ax = b one may use te linear solver in matlab (resp. Scilab) as follows x=a\b; c) Ceck tat wit te EI sceme tere is no more stability problems (wit for instance N = 10 and I = 50). 5

6 5 Crank-Nicolson sceme a) Program te Crank-Nicolson sceme (CN) (tis is te θ-sceme wit θ = 1 2 ). b) Numerically study te convergence of te centered CN sceme. To do so, one can compute te numerical error obtained wit te following values N = I + 1 {10, 20, 40, 80, 160}. Ten do te same study as for te Euler implicit sceme and compare by making an error table (and wit an order estimation) One sould observe a second order beavior for CN, wile it sould be first order for EI. c) Ceck tat tese results are coerent wit te teory. 6 Exercices Exercice 2 : te Call option a) Using te put-call parity formula, do a function tat also computes te black and scoles formula for te call. b) Propose adequate left and rigt boundary conditions (tat is, at s = S min and s = S max ) for te call option, in te form (v(t, S min ) = v l (t) and v(t, S max ) = v r (t), were v l, v r are function to determine. 2 c) Propose an apropriate PDE for te call option, using tese boundary conditions. d) Write an Euler explicit sceme for te call option, and program it. Exercice 3 : using sparse matrices. Te matrix A as only a few non zero elements (about 3I non zero elements). It is possible to code only te non-zero elements of A by using te matrix type sparse. Type elp sparse or doc sparse for documentation in matlab (use A=spzeros(I,I) to initialize, type A or full(a) to ceck te values, use Id=speye(I,I) for te sparse identity matrix ; te rest of te code sould be oterwise uncanged.) Program in particular te EI sceme by using only sparse matrices, and compare te speed of te new code wit respect to te old one for large I values. Execution time can be evaluated by using te commands tic; toc; (resp. time() in Scilab) as follows : tic; % INSTRUCTIONS; %... t=toc; printf( cpu time : t=%5.2f, t); (t contains te time elapsed between te calls of tic and toc.) 2. v l (t, s) 0, v r(t, s) s Ke rt. 6

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2017 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2016/m2mo/m2mo.html We look for a numerical approximation

More information

1 Explicit Euler Scheme (or Euler Forward Scheme )

1 Explicit Euler Scheme (or Euler Forward Scheme ) Numerical methods for PDE in Finance - M2MO - Paris Diderot American options January 2018 Files: https://ljll.math.upmc.fr/bokanowski/enseignement/2017/m2mo/m2mo.html We look for a numerical approximation

More information

Lecture 4 - Finite differences methods for PDEs

Lecture 4 - Finite differences methods for PDEs Finite diff. Lecture 4 - Finite differences methods for PDEs Lina von Sydow Finite differences, Lina von Sydow, (1 : 18) Finite difference methods Finite diff. Black-Scholes equation @v @t + 1 2 2 s 2

More information

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu

Chapter 5 Finite Difference Methods. Math6911 W07, HM Zhu Chapter 5 Finite Difference Methods Math69 W07, HM Zhu References. Chapters 5 and 9, Brandimarte. Section 7.8, Hull 3. Chapter 7, Numerical analysis, Burden and Faires Outline Finite difference (FD) approximation

More information

ACC 471 Practice Problem Set # 4 Fall Suggested Solutions

ACC 471 Practice Problem Set # 4 Fall Suggested Solutions ACC 471 Practice Problem Set # 4 Fall 2002 Suggested Solutions 1. Text Problems: 17-3 a. From put-call parity, C P S 0 X 1 r T f 4 50 50 1 10 1 4 $5 18. b. Sell a straddle, i.e. sell a call and a put to

More information

Project 1: Double Pendulum

Project 1: Double Pendulum Final Projects Introduction to Numerical Analysis II http://www.math.ucsb.edu/ atzberg/winter2009numericalanalysis/index.html Professor: Paul J. Atzberger Due: Friday, March 20th Turn in to TA s Mailbox:

More information

Analysis of a Hybrid Finite Difference Scheme for the Black-Scholes Equation Governing Option Pricing

Analysis of a Hybrid Finite Difference Scheme for the Black-Scholes Equation Governing Option Pricing ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.235-240 Analysis of a Hybrid Finite Difference Sceme for te Black-Scoles Equation Governing Option

More information

FINITE DIFFERENCE METHODS

FINITE DIFFERENCE METHODS FINITE DIFFERENCE METHODS School of Mathematics 2013 OUTLINE Review 1 REVIEW Last time Today s Lecture OUTLINE Review 1 REVIEW Last time Today s Lecture 2 DISCRETISING THE PROBLEM Finite-difference approximations

More information

Calculus I Homework: Four Ways to Represent a Function Page 1. where h 0 and f(x) = x x 2.

Calculus I Homework: Four Ways to Represent a Function Page 1. where h 0 and f(x) = x x 2. Calculus I Homework: Four Ways to Represent a Function Page 1 Questions Example Find f(2 + ), f(x + ), and f(x + ) f(x) were 0 and f(x) = x x 2. Example Find te domain and sketc te grap of te function

More information

Computational Finance Finite Difference Methods

Computational Finance Finite Difference Methods Explicit finite difference method Computational Finance Finite Difference Methods School of Mathematics 2018 Today s Lecture We now introduce the final numerical scheme which is related to the PDE solution.

More information

A Study on Numerical Solution of Black-Scholes Model

A Study on Numerical Solution of Black-Scholes Model Journal of Mathematical Finance, 8, 8, 37-38 http://www.scirp.org/journal/jmf ISSN Online: 6-44 ISSN Print: 6-434 A Study on Numerical Solution of Black-Scholes Model Md. Nurul Anwar,*, Laek Sazzad Andallah

More information

Practice Exam 1. Use the limit laws from class compute the following limit. Show all your work and cite all rules used explicitly. xf(x) + 5x.

Practice Exam 1. Use the limit laws from class compute the following limit. Show all your work and cite all rules used explicitly. xf(x) + 5x. Practice Exam 1 Tese problems are meant to approximate wat Exam 1 will be like. You can expect tat problems on te exam will be of similar difficulty. Te actual exam will ave problems from sections 11.1

More information

PRICE INDEX AGGREGATION: PLUTOCRATIC WEIGHTS, DEMOCRATIC WEIGHTS, AND VALUE JUDGMENTS

PRICE INDEX AGGREGATION: PLUTOCRATIC WEIGHTS, DEMOCRATIC WEIGHTS, AND VALUE JUDGMENTS Revised June 10, 2003 PRICE INDEX AGGREGATION: PLUTOCRATIC WEIGHTS, DEMOCRATIC WEIGHTS, AND VALUE JUDGMENTS Franklin M. Fiser Jane Berkowitz Carlton and Dennis William Carlton Professor of Economics Massacusetts

More information

Introduction. Valuation of Assets. Capital Budgeting in Global Markets

Introduction. Valuation of Assets. Capital Budgeting in Global Markets Capital Budgeting in Global Markets Spring 2008 Introduction Capital markets and investment opportunities ave become increasingly global over te past 25 years. As firms (and individuals) are increasingly

More information

MATH60082 Example Sheet 6 Explicit Finite Difference

MATH60082 Example Sheet 6 Explicit Finite Difference MATH68 Example Sheet 6 Explicit Finite Difference Dr P Johnson Initial Setup For the explicit method we shall need: All parameters for the option, such as X and S etc. The number of divisions in stock,

More information

Infinite Reload Options: Pricing and Analysis

Infinite Reload Options: Pricing and Analysis Infinite Reload Options: Pricing and Analysis A. C. Bélanger P. A. Forsyth April 27, 2006 Abstract Infinite reload options allow the user to exercise his reload right as often as he chooses during the

More information

A distributed Laplace transform algorithm for European options

A distributed Laplace transform algorithm for European options A distributed Laplace transform algorithm for European options 1 1 A. J. Davies, M. E. Honnor, C.-H. Lai, A. K. Parrott & S. Rout 1 Department of Physics, Astronomy and Mathematics, University of Hertfordshire,

More information

Numerical Methods in Option Pricing (Part III)

Numerical Methods in Option Pricing (Part III) Numerical Methods in Option Pricing (Part III) E. Explicit Finite Differences. Use of the Forward, Central, and Symmetric Central a. In order to obtain an explicit solution for the price of the derivative,

More information

Final Exam Key, JDEP 384H, Spring 2006

Final Exam Key, JDEP 384H, Spring 2006 Final Exam Key, JDEP 384H, Spring 2006 Due Date for Exam: Thursday, May 4, 12:00 noon. Instructions: Show your work and give reasons for your answers. Write out your solutions neatly and completely. There

More information

Lecture 4. Finite difference and finite element methods

Lecture 4. Finite difference and finite element methods Finite difference and finite element methods Lecture 4 Outline Black-Scholes equation From expectation to PDE Goal: compute the value of European option with payoff g which is the conditional expectation

More information

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE.

As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. 7. Introduction to the numerical integration of PDE. As an example, we consider the following PDE with one variable; Finite difference method is one of numerical method for the PDE. Accuracy requirements

More information

SAT Practice Test #1 IMPORTANT REMINDERS. A No. 2 pencil is required for the test. Do not use a mechanical pencil or pen.

SAT Practice Test #1 IMPORTANT REMINDERS. A No. 2 pencil is required for the test. Do not use a mechanical pencil or pen. SAT Practice Test # IMPORTAT REMIDERS A o. pencil is required for te test. Do not use a mecanical pencil or pen. Saring any questions wit anyone is a violation of Test Security and Fairness policies and

More information

MAFS Computational Methods for Pricing Structured Products

MAFS Computational Methods for Pricing Structured Products MAFS550 - Computational Methods for Pricing Structured Products Solution to Homework Two Course instructor: Prof YK Kwok 1 Expand f(x 0 ) and f(x 0 x) at x 0 into Taylor series, where f(x 0 ) = f(x 0 )

More information

3.1 THE 2 2 EXCHANGE ECONOMY

3.1 THE 2 2 EXCHANGE ECONOMY Essential Microeconomics -1-3.1 THE 2 2 EXCHANGE ECONOMY Private goods economy 2 Pareto efficient allocations 3 Edgewort box analysis 6 Market clearing prices and Walras Law 14 Walrasian Equilibrium 16

More information

The study guide does not look exactly like the exam but it will help you to focus your study efforts.

The study guide does not look exactly like the exam but it will help you to focus your study efforts. Mat 0 Eam Study Guide Solutions Te study guide does not look eactly like te eam but it will elp you to focus your study efforts. Here is part of te list of items under How to Succeed in Mat 0 tat is on

More information

Maximizing the Sharpe Ratio and Information Ratio in the Barra Optimizer

Maximizing the Sharpe Ratio and Information Ratio in the Barra Optimizer www.mscibarra.com Maximizing te Sarpe Ratio and Information Ratio in te Barra Optimizer June 5, 2009 Leonid Kopman Scott Liu 2009 MSCI Barra. All rigts reserved. of 4 Maximizing te Sarpe Ratio ABLE OF

More information

The Implicit Pipeline Method

The Implicit Pipeline Method Te Implicit Pipeline Metod Jon B. Pormann NSF/ERC for Emerging Cardiovascular Tecnologies Duke University, Duram, NC, 7708-096 Jon A. Board, Jr. Department of Electrical and Computer Engineering Duke University,

More information

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation

Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Applied Mathematics Volume 1, Article ID 796814, 1 pages doi:11155/1/796814 Research Article Exponential Time Integration and Second-Order Difference Scheme for a Generalized Black-Scholes Equation Zhongdi

More information

Calibration Lecture 4: LSV and Model Uncertainty

Calibration Lecture 4: LSV and Model Uncertainty Calibration Lecture 4: LSV and Model Uncertainty March 2017 Recap: Heston model Recall the Heston stochastic volatility model ds t = rs t dt + Y t S t dw 1 t, dy t = κ(θ Y t ) dt + ξ Y t dw 2 t, where

More information

Complex Survey Sample Design in IRS' Multi-objective Taxpayer Compliance Burden Studies

Complex Survey Sample Design in IRS' Multi-objective Taxpayer Compliance Burden Studies Complex Survey Sample Design in IRS' Multi-objective Taxpayer Compliance Burden Studies Jon Guyton Wei Liu Micael Sebastiani Internal Revenue Service, Office of Researc, Analysis & Statistics 1111 Constitution

More information

Lab12_sol. November 21, 2017

Lab12_sol. November 21, 2017 Lab12_sol November 21, 2017 1 Sample solutions of exercises of Lab 12 Suppose we want to find the current prices of an European option so that the error at the current stock price S(0) = S 0 was less that

More information

a) Give an example of a case when an (s,s) policy is not the same as an (R,Q) policy. (2p)

a) Give an example of a case when an (s,s) policy is not the same as an (R,Q) policy. (2p) roblem a) Give an example of a case wen an (s,s) policy is not te same as an (R,) policy. (p) b) Consider exponential smooting wit te smooting constant α and moving average over N periods. Ten, tese two

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 5, pp. 65-85, 2003. Copyrigt 2003,. ISSN 068-963. ETNA ON MULTIGRID FOR LINEAR COMPLEMENTARITY PROBLEMS WITH APPLICATION TO AMERICAN-STYLE OPTIONS

More information

PDE Methods for the Maximum Drawdown

PDE Methods for the Maximum Drawdown PDE Methods for the Maximum Drawdown Libor Pospisil, Jan Vecer Columbia University, Department of Statistics, New York, NY 127, USA April 1, 28 Abstract Maximum drawdown is a risk measure that plays an

More information

ECON 200 EXERCISES (1,1) (d) Use your answer to show that (b) is not the equilibrium price vector if. that must be satisfied?

ECON 200 EXERCISES (1,1) (d) Use your answer to show that (b) is not the equilibrium price vector if. that must be satisfied? ECON 00 EXERCISES 4 EXCHNGE ECONOMY 4 Equilibrium in an ecange economy Tere are two consumers and wit te same utility function U ( ) ln H {, } Te aggregate endowment is tat prices sum to Tat is ( p, p)

More information

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology

FE610 Stochastic Calculus for Financial Engineers. Stevens Institute of Technology FE610 Stochastic Calculus for Financial Engineers Lecture 13. The Black-Scholes PDE Steve Yang Stevens Institute of Technology 04/25/2013 Outline 1 The Black-Scholes PDE 2 PDEs in Asset Pricing 3 Exotic

More information

Managing and Identifying Risk

Managing and Identifying Risk Managing and Identifying Risk Spring 2008 All of life is te management of risk, not its elimination Risk is te volatility of unexpected outcomes. In te context of financial risk it can relate to volatility

More information

What are Swaps? Spring Stephen Sapp ISFP. Stephen Sapp

What are Swaps? Spring Stephen Sapp ISFP. Stephen Sapp Wat are Swaps? Spring 2013 Basic Idea of Swaps I ave signed up for te Wine of te Mont Club and you ave signed up for te Beer of te Mont Club. As winter approaces, I would like to ave beer but you would

More information

Numerical Methods For American Option Pricing. Peng Liu. June 2008

Numerical Methods For American Option Pricing. Peng Liu. June 2008 Numerical Methods For American Option Pricing Peng Liu June 2008 Abstract An analytic solution does not exist for evaluating the American put option. Usually, the value is obtained by applying numerical

More information

Galerkin Least Square FEM for the European option price with CEV model

Galerkin Least Square FEM for the European option price with CEV model Galerkin Least Square FEM for the European option price with CEV model A Major Qualifying Project Submitted to the Faculty of Worcester Polytechnic Institute In partial fulfillment of requirements for

More information

2.17 Tax Expenditures. Introduction. Scope and Objectives

2.17 Tax Expenditures. Introduction. Scope and Objectives Introduction Programs offered by te Province are normally outlined in te Estimates and approved by te Members of te House of Assembly as part of te annual budgetary approval process. However, te Province

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 13 Lecture 13 November 15, 217 Derivation of the Black-Scholes-Merton

More information

Finite Element Method

Finite Element Method In Finite Difference Methods: the solution domain is divided into a grid of discrete points or nodes the PDE is then written for each node and its derivatives replaced by finite-divided differences In

More information

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48

Systems of Ordinary Differential Equations. Lectures INF2320 p. 1/48 Systems of Ordinary Differential Equations Lectures INF2320 p. 1/48 Lectures INF2320 p. 2/48 ystems of ordinary differential equations Last two lectures we have studied models of the form y (t) = F(y),

More information

Can more education be bad? Some simple analytics on financing better education for development

Can more education be bad? Some simple analytics on financing better education for development 55 an more education be bad? ome simple analytics on financing better education for development Rossana atrón University of Uruguay rossana@decon.edu.uy Investigaciones de Economía de la Educación 5 1091

More information

Evaluation of Asian option by using RBF approximation

Evaluation of Asian option by using RBF approximation Boundary Elements and Other Mesh Reduction Methods XXVIII 33 Evaluation of Asian option by using RBF approximation E. Kita, Y. Goto, F. Zhai & K. Shen Graduate School of Information Sciences, Nagoya University,

More information

11.1 Average Rate of Change

11.1 Average Rate of Change 11.1 Average Rate of Cange Question 1: How do you calculate te average rate of cange from a table? Question : How do you calculate te average rate of cange from a function? In tis section, we ll examine

More information

Number of Municipalities. Funding (Millions) $ April 2003 to July 2003

Number of Municipalities. Funding (Millions) $ April 2003 to July 2003 Introduction Te Department of Municipal and Provincial Affairs is responsible for matters relating to local government, municipal financing, urban and rural planning, development and engineering, and coordination

More information

2.11 School Board Executive Compensation Practices. Introduction

2.11 School Board Executive Compensation Practices. Introduction Introduction Figure 1 As part of Education Reform in 1996-97, 27 denominational scool boards were consolidated into 10 scool boards and a Frenc-language scool board. From 1 January 1997 to 31 August 2004

More information

Optimal Dam Management

Optimal Dam Management Optimal Dam Management Michel De Lara et Vincent Leclère July 3, 2012 Contents 1 Problem statement 1 1.1 Dam dynamics.................................. 2 1.2 Intertemporal payoff criterion..........................

More information

2.1 Mathematical Basis: Risk-Neutral Pricing

2.1 Mathematical Basis: Risk-Neutral Pricing Chapter Monte-Carlo Simulation.1 Mathematical Basis: Risk-Neutral Pricing Suppose that F T is the payoff at T for a European-type derivative f. Then the price at times t before T is given by f t = e r(t

More information

Towards efficient option pricing in incomplete markets

Towards efficient option pricing in incomplete markets Towards efficient option pricing in incomplete markets GPU TECHNOLOGY CONFERENCE 2016 Shih-Hau Tan 1 2 1 Marie Curie Research Project STRIKE 2 University of Greenwich Apr. 6, 2016 (University of Greenwich)

More information

Figure 11. difference in the y-values difference in the x-values

Figure 11. difference in the y-values difference in the x-values 1. Numerical differentiation Tis Section deals wit ways of numerically approximating derivatives of functions. One reason for dealing wit tis now is tat we will use it briefly in te next Section. But as

More information

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem

Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Application of an Interval Backward Finite Difference Method for Solving the One-Dimensional Heat Conduction Problem Malgorzata A. Jankowska 1, Andrzej Marciniak 2 and Tomasz Hoffmann 2 1 Poznan University

More information

Numerical Methods for the Solution of the HJB Equations Arising in European and American Option Pricing with Proportional Transaction Costs

Numerical Methods for the Solution of the HJB Equations Arising in European and American Option Pricing with Proportional Transaction Costs Numerical Metods for te Solution of te HJB Equations Arising in European and American Option Pricing wit Proportional Transaction Costs Wen Li Tis tesis is presented for te degree of Doctor of Pilosopy

More information

What are Swaps? Basic Idea of Swaps. What are Swaps? Advanced Corporate Finance

What are Swaps? Basic Idea of Swaps. What are Swaps? Advanced Corporate Finance Wat are Swaps? Spring 2008 Basic Idea of Swaps A swap is a mutually beneficial excange of cas flows associated wit a financial asset or liability. Firm A gives Firm B te obligation or rigts to someting

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Splay Trees Date: 9/27/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Splay Trees Date: 9/27/16 600.463 Introduction to lgoritms / lgoritms I Lecturer: Micael initz Topic: Splay Trees ate: 9/27/16 8.1 Introduction Today we re going to talk even more about binary searc trees. -trees, red-black trees,

More information

Market shares and multinationals investment: a microeconomic foundation for FDI gravity equations

Market shares and multinationals investment: a microeconomic foundation for FDI gravity equations Market sares and multinationals investment: a microeconomic foundation for FDI gravity equations Gaetano Alfredo Minerva November 22, 2006 Abstract In tis paper I explore te implications of te teoretical

More information

Making Informed Rollover Decisions

Making Informed Rollover Decisions Making Informed Rollover Decisions WHAT TO DO WITH YOUR EMPLOYER-SPONSORED RETIREMENT PLAN ASSETS UNDERSTANDING ROLLOVERS Deciding wat to do wit qualified retirement plan assets could be one of te most

More information

Stochastic Differential Equations in Finance and Monte Carlo Simulations

Stochastic Differential Equations in Finance and Monte Carlo Simulations Stochastic Differential Equations in Finance and Department of Statistics and Modelling Science University of Strathclyde Glasgow, G1 1XH China 2009 Outline Stochastic Modelling in Asset Prices 1 Stochastic

More information

THE ROLE OF GOVERNMENT IN THE CREDIT MARKET. Benjamin Eden. Working Paper No. 09-W07. September 2009

THE ROLE OF GOVERNMENT IN THE CREDIT MARKET. Benjamin Eden. Working Paper No. 09-W07. September 2009 THE ROLE OF GOVERNMENT IN THE CREDIT MARKET by Benjamin Eden Working Paper No. 09-W07 September 2009 DEPARTMENT OF ECONOMICS VANDERBILT UNIVERSITY NASHVILLE, TN 37235 www.vanderbilt.edu/econ THE ROLE OF

More information

Package multiassetoptions

Package multiassetoptions Package multiassetoptions February 20, 2015 Type Package Title Finite Difference Method for Multi-Asset Option Valuation Version 0.1-1 Date 2015-01-31 Author Maintainer Michael Eichenberger

More information

Numerical Methods for Stochastic Differential Equations with Applications to Finance

Numerical Methods for Stochastic Differential Equations with Applications to Finance Numerical Methods for Stochastic Differential Equations with Applications to Finance Matilde Lopes Rosa Instituto Superior Técnico University of Lisbon, Portugal May 2016 Abstract The pricing of financial

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

INTERNATIONAL REAL ESTATE REVIEW 1999 Vol. 2 No 1: pp

INTERNATIONAL REAL ESTATE REVIEW 1999 Vol. 2 No 1: pp 0 Lin and Lin NTERNATONAL REAL ESTATE REVEW 999 Vol. No : pp. 0-5 An Estimation of Elasticities of onsumption Demand and nvestment Demand for Owner- Occupied Housing in Taiwan : A Two-Period Model u-ia

More information

1 Asset Pricing: Bonds vs Stocks

1 Asset Pricing: Bonds vs Stocks Asset Pricing: Bonds vs Stocks The historical data on financial asset returns show that one dollar invested in the Dow- Jones yields 6 times more than one dollar invested in U.S. Treasury bonds. The return

More information

Advanced Numerical Methods for Financial Problems

Advanced Numerical Methods for Financial Problems Advanced Numerical Methods for Financial Problems Pricing of Derivatives Krasimir Milanov krasimir.milanov@finanalytica.com Department of Research and Development FinAnalytica Ltd. Seminar: Signal Analysis

More information

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID:

MATH6911: Numerical Methods in Finance. Final exam Time: 2:00pm - 5:00pm, April 11, Student Name (print): Student Signature: Student ID: MATH6911 Page 1 of 16 Winter 2007 MATH6911: Numerical Methods in Finance Final exam Time: 2:00pm - 5:00pm, April 11, 2007 Student Name (print): Student Signature: Student ID: Question Full Mark Mark 1

More information

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS.

MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS. MASM006 UNIVERSITY OF EXETER SCHOOL OF ENGINEERING, COMPUTER SCIENCE AND MATHEMATICS MATHEMATICAL SCIENCES FINANCIAL MATHEMATICS May/June 2006 Time allowed: 2 HOURS. Examiner: Dr N.P. Byott This is a CLOSED

More information

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives

Advanced Topics in Derivative Pricing Models. Topic 4 - Variance products and volatility derivatives Advanced Topics in Derivative Pricing Models Topic 4 - Variance products and volatility derivatives 4.1 Volatility trading and replication of variance swaps 4.2 Volatility swaps 4.3 Pricing of discrete

More information

Pricing American Options Using a Space-time Adaptive Finite Difference Method

Pricing American Options Using a Space-time Adaptive Finite Difference Method Pricing American Options Using a Space-time Adaptive Finite Difference Method Jonas Persson Abstract American options are priced numerically using a space- and timeadaptive finite difference method. The

More information

From Discrete Time to Continuous Time Modeling

From Discrete Time to Continuous Time Modeling From Discrete Time to Continuous Time Modeling Prof. S. Jaimungal, Department of Statistics, University of Toronto 2004 Arrow-Debreu Securities 2004 Prof. S. Jaimungal 2 Consider a simple one-period economy

More information

TRADE FACILITATION AND THE EXTENSIVE MARGIN OF EXPORTS

TRADE FACILITATION AND THE EXTENSIVE MARGIN OF EXPORTS bs_bs_banner Vol. 65, No. 2, June 2014 Te Journal of te Japanese Economic Association TRADE FACILITATION AND THE EXTENSIVE MARGIN OF EXPORTS By ROBERT C. FEENSTRA and HONG MA doi: 10.1111/jere.12031 University

More information

Boundary conditions for options

Boundary conditions for options Boundary conditions for options Boundary conditions for options can refer to the non-arbitrage conditions that option prices has to satisfy. If these conditions are broken, arbitrage can exist. to the

More information

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t

Economathematics. Problem Sheet 1. Zbigniew Palmowski. Ws 2 dw s = 1 t Economathematics Problem Sheet 1 Zbigniew Palmowski 1. Calculate Ee X where X is a gaussian random variable with mean µ and volatility σ >.. Verify that where W is a Wiener process. Ws dw s = 1 3 W t 3

More information

2017 Year-End Retirement Action Plan

2017 Year-End Retirement Action Plan 2017 Year-End Retirement Action Plan Te end of te year is a good time to assess your overall financial picture, especially your retirement strategy. As te year comes to a close, use tis action plan to

More information

Graduate Macro Theory II: Notes on Value Function Iteration

Graduate Macro Theory II: Notes on Value Function Iteration Graduate Macro Theory II: Notes on Value Function Iteration Eric Sims University of Notre Dame Spring 07 Introduction These notes discuss how to solve dynamic economic models using value function iteration.

More information

Price indeterminacy in day-ahead market

Price indeterminacy in day-ahead market Price indeterminacy in day-aead market Mid-Price rule A "price indeterminacy" is a situation in wic at least two feasible solutions wit te same matced volume, te same block and MIC selections and te same

More information

Capital Budgeting in Global Markets

Capital Budgeting in Global Markets Capital Budgeting in Global Markets Spring 2013 Introduction Capital budgeting is te process of determining wic investments are wort pursuing. Firms (and individuals) can diversify teir operations (investments)

More information

Binary Search Tree and AVL Trees. Binary Search Tree. Binary Search Tree. Binary Search Tree. Techniques: How does the BST works?

Binary Search Tree and AVL Trees. Binary Search Tree. Binary Search Tree. Binary Search Tree. Techniques: How does the BST works? Binary Searc Tree and AVL Trees Binary Searc Tree A commonly-used data structure for storing and retrieving records in main memory PUC-Rio Eduardo S. Laber Binary Searc Tree Binary Searc Tree A commonly-used

More information

Labor Market Flexibility and Growth.

Labor Market Flexibility and Growth. Labor Market Flexibility and Growt. Enisse Karroubi July 006. Abstract Tis paper studies weter exibility on te labor market contributes to output growt. Under te assumption tat rms and workers face imperfect

More information

King s College London

King s College London King s College London University Of London This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority

More information

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION

AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION J. KSIAM Vol.14, No.3, 175 187, 21 AN OPERATOR SPLITTING METHOD FOR PRICING THE ELS OPTION DARAE JEONG, IN-SUK WEE, AND JUNSEOK KIM DEPARTMENT OF MATHEMATICS, KOREA UNIVERSITY, SEOUL 136-71, KOREA E-mail

More information

Financial Risk Management

Financial Risk Management Financial Risk Management Professor: Thierry Roncalli Evry University Assistant: Enareta Kurtbegu Evry University Tutorial exercices #4 1 Correlation and copulas 1. The bivariate Gaussian copula is given

More information

Finite Difference Methods for Option Pricing

Finite Difference Methods for Option Pricing Finite Difference Methods for Option Pricing Muhammad Usman, Ph.D. University of Dayton CASM Workshop - Black Scholes and Beyond: Pricing Equity Derivatives LUMS, Lahore, Pakistan, May 16 18, 2014 Outline

More information

Lecture 20 Heat Equation and Parabolic Problems

Lecture 20 Heat Equation and Parabolic Problems .539 Lecture 2 Heat Equation and Parabolic Problems Prof. Dean Wang. Classification of Differential Equations In most texts the classification is given for a linear second-order differential equation in

More information

1 The Hull-White Interest Rate Model

1 The Hull-White Interest Rate Model Abstract Numerical Implementation of Hull-White Interest Rate Model: Hull-White Tree vs Finite Differences Artur Sepp Mail: artursepp@hotmail.com, Web: www.hot.ee/seppar 30 April 2002 We implement the

More information

American Equity Option Valuation Practical Guide

American Equity Option Valuation Practical Guide Valuation Practical Guide John Smith FinPricing Summary American Equity Option Introduction The Use of American Equity Options Valuation Practical Guide A Real World Example American Option Introduction

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2012 MODULE 8 : Survey sampling and estimation Time allowed: One and a alf ours Candidates sould answer THREE questions.

More information

Black-Scholes-Merton Model

Black-Scholes-Merton Model Black-Scholes-Merton Model Weerachart Kilenthong University of the Thai Chamber of Commerce c Kilenthong 2017 Weerachart Kilenthong University of the Thai Chamber Black-Scholes-Merton of Commerce Model

More information

Final exam solutions

Final exam solutions EE365 Stochastic Control / MS&E251 Stochastic Decision Models Profs. S. Lall, S. Boyd June 5 6 or June 6 7, 2013 Final exam solutions This is a 24 hour take-home final. Please turn it in to one of the

More information

FROM NAVIER-STOKES TO BLACK-SCHOLES: NUMERICAL METHODS IN COMPUTATIONAL FINANCE

FROM NAVIER-STOKES TO BLACK-SCHOLES: NUMERICAL METHODS IN COMPUTATIONAL FINANCE Irish Math. Soc. Bulletin Number 75, Summer 2015, 7 19 ISSN 0791-5578 FROM NAVIER-STOKES TO BLACK-SCHOLES: NUMERICAL METHODS IN COMPUTATIONAL FINANCE DANIEL J. DUFFY Abstract. In this article we give a

More information

Numerical schemes for SDEs

Numerical schemes for SDEs Lecture 5 Numerical schemes for SDEs Lecture Notes by Jan Palczewski Computational Finance p. 1 A Stochastic Differential Equation (SDE) is an object of the following type dx t = a(t,x t )dt + b(t,x t

More information

Option Pricing Models for European Options

Option Pricing Models for European Options Chapter 2 Option Pricing Models for European Options 2.1 Continuous-time Model: Black-Scholes Model 2.1.1 Black-Scholes Assumptions We list the assumptions that we make for most of this notes. 1. The underlying

More information

Managing and Identifying Risk

Managing and Identifying Risk Managing and Identifying Risk Fall 2011 All of life is te management of risk, not its elimination Risk is te volatility of unexpected outcomes. In te context of financial risk te volatility is in: 1. te

More information

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2017 9 Lecture 9 9.1 The Greeks November 15, 2017 Let

More information

Production, safety, exchange, and risk. Kjell Hausken

Production, safety, exchange, and risk. Kjell Hausken Production, safety, excange, and risk Kjell Hausken Abstract: Two agents convert resources into safety investment and production wile excanging goods voluntarily. Safety investment ensures reduction of

More information

Taxes and Entry Mode Decision in Multinationals: Export and FDI with and without Decentralization

Taxes and Entry Mode Decision in Multinationals: Export and FDI with and without Decentralization Taxes and Entry Mode Decision in Multinationals: Export and FDI wit and witout Decentralization Yosimasa Komoriya y Cuo University Søren Bo Nielsen z Copenagen Business Scool Pascalis Raimondos z Copenagen

More information

arxiv: v1 [q-fin.cp] 1 Nov 2016

arxiv: v1 [q-fin.cp] 1 Nov 2016 Essentially high-order compact schemes with application to stochastic volatility models on non-uniform grids arxiv:1611.00316v1 [q-fin.cp] 1 Nov 016 Bertram Düring Christof Heuer November, 016 Abstract

More information

Math 416/516: Stochastic Simulation

Math 416/516: Stochastic Simulation Math 416/516: Stochastic Simulation Haijun Li lih@math.wsu.edu Department of Mathematics Washington State University Week 13 Haijun Li Math 416/516: Stochastic Simulation Week 13 1 / 28 Outline 1 Simulation

More information