Random Variables. b 2.

Size: px
Start display at page:

Download "Random Variables. b 2."

Transcription

1 Random Varables Generally the object of an nvestgators nterest s not necessarly the acton n the sample space but rather some functon of t. Techncally a real valued functon or mappng whose doman s the sample space s called a Random Varable, t s these that are usually the object of an nvestgators attenton. If the mappng s onto a fnte (or countably nfnte set of ponts on the real lne, the random varable s sad to be dscrete. Otherwse, f the mappng s onto an uncountably nfnte set of ponts, the random varable s contnuous. Ths dstncton s a nusance because the nature of thng whch descrbes the probablstc behavour of the random varable, called a Probablty Densty Functon (denoted here as f(x and referred to as a p.d.f., wll dffer accordng to whether the varable s dscrete or contnuous. In the case of a dscrete random varable X, wth typcal outcome x, (t shall be assumed for convenence that the x s are ordered wth I from smallest to largest, the probablty densty functon f(x s smply the sum of the probabltes of outcomes n the sample space whch result n the random varable takng on the value x. Bascally the p.d.f. for a Dscrete Random Varable obeys rules:. f ( x. f ( all possble x In the dscrete case f(x P(Xx, n the contnuous case t s not possble to nterpret the p.d.f. n the same way ndeed, snce X can take on any one of an uncountably nfnte set of values, we cannot gve t a subscrpt. when the random varable X s contnuous wth typcal value x, the probablty densty functon f(x s a functon that, when ntegrated over the range (a, b, wll yeld the probablty that a sample s realzed such that the resultant x would fall n that range (much as the probablty functon for contnuous sample spaces was defned above. In ths case the p.d.f. wll obey three basc rules: b.. x. dx P( a x b a 3. f ( x dx Assocated wth these denstes are Cumulatve Dstrbuton Functons F(x whch n each case yeld the probablty that the random varable X s less than some value x. Algebracally these may be expressed as:

2 P( X x F( x k t f ( x ; where x x f P ( X x F( x ( z dz k x x k+ Note that n the case of dscrete random varables F(x s defned over the whole range of the random varable and n the case of contnuous dstrbutons d(fx/dx f(x.e. the dervatve of the c.d.f. of x gves us the p.d.f. of x. Expected Values and Varances The Expected Value of a functon g(x of a random varable s a measure of ts locaton and s defned for dscrete and contnuous random varables respectvely as follows: E ( g( X g( x f ( all possble g( x x x E ( g( X dx The expectatons operator E( s smply another mathematcal operator. Just as when the operator d/dx n front of a functon g(x tells us to take the dervatve of the functon g(x wth respect to x accordng to a well specfed set of rules so E(g(X tells us to perform one of the above calculatons dependent upon whether X s contnuous or dscrete. Lke the dervatve and ntegral operators, the expectatons operator s a lnear operator so that the expected value of a lnear functon of random varables s the same lnear functon of the expected values of those random varables. Ths property wll be of useful shortly. Asde from the general applcablty of the above formulae there are many specal types of g( functon of nterest to statstcans, each generatng partcular detals of the nature of the random varable n queston, thngs lke moment generatng functons and characterstc functons that are the materal of a more advanced text and thngs lke the Expected Value functon and Varance functon that are of nterest to us here. Two g( functons of specal nterest. g(x X Obvously ths yelds E(X, the expected value of the random varable tself (frequently referred to as the mean and represented by the character μ, whch s a constant provdng

3 a measure of where the centre of the dstrbuton s located. The metrc here s the same as that of the random varable so that, f f(x s an ncome dstrbuton measured n $US, then ts locaton wll be n terms of a $US value. The usefulness of the lnearty property of the expectatons operator can be seen by lettng g(x a + bx where a and b are fxed constants. Takng expectatons of ths g(x yelds the expected value of a lnear functon of X whch, followng the respectve rules of summaton and ntegraton, can be shown to be the same lnear functon of the expected value of X as follows: E( a + bx ( a + bx a f ( x + b xf ( x a + be( X all possble x all possble x ( a + bx dx a dx + b all possble E ( a + bcx x dx a + be( X What the above demonstrates s two basc rules for expectatons operators regardless of whether random varables are dscrete or contnuous:. E(a a The expected value of a constant s a constant. E(bX be(x The expected value of a constant tmes a random varable s equal to the constant tmes the expected value of the random varable x. g(x (X-E(X, Functons of ths form yeld th moments about the mean. The metrc here s the th power of that of the orgnal dstrbuton so that f f(x relates to ncomes measured n $US then the th moment about the mean s measured n ($US. Sometmes the th root of g(x s employed snce t yelds a measure of the approprate characterstc n terms of the orgnal unts of the dstrbuton. Furthermore to make dstrbutons measured under dfferent metrcs comparable the functon g(x deflated by the approprate power of E(X (provded t s not s consdered, provdng a metrc free comparator. The second moment ( s of partcular nterest snce as the varance (frequently represented as σ or V(X, ts square root s referred to as the standard devaton t provdes a measure of how spread out a dstrbuton s. Of partcular nterest here s the Coeffcent of Varaton (CV gven by: The Coeffcent of Varaton: E( X E( X CV ( E( X σ μ The thrd moment provdes a measure of skewness or how asymmetrc a dstrbuton s and the fourth, a measure of kurtoss or how peaked a dstrbuton s but these wll not be consdered here.

4 Whch may be nterpreted as a metrc free measure of dsperson. Returnng to the varance, regardless of whether the varable s dscrete or contnuous, notce that: V(x E((X-E(X E(X E(XX + (E(X E(X E(E(XX + (E(X E(X (E(X So that the varance s equal to the expected value of X less the square of the expected value of X (these are not the same thng. Furthermore, agan regardless of whether the random varable s dscrete or contnuous notce that for Y a + bx: V(Y E((Y-E(Y E((a + bx (+be(x E((bX be(x b E((X-E(X b V(X So that the varance of a constant s zero and the varance of a constant tmes a random varable s the square of the constant tmes the random varable. The varance of a lnear functon of several random varables s a lttle more complcated, dependng as t does on the relatonshps between the random varables t wll be dealt wth when multvarate analyss s consdered later on. There are numerous dscrete and contnuous probablty densty functons to sut all knds of purposes, one of the arts n practcng statstcs s that of choosng the one most approprate for a partcular problem. Here we shall consder two examples of each to get an dea of what they are lke. Examples of Dscrete Probablty Densty Functons The Bnomal Dstrbuton. The Bnomal Dstrbuton s founded upon a process n whch the same experment s ndependently repeated n tmes under dentcal condtons. The Sample Space for the experment contans two possble events A and A c and the ssue at hand s how many tmes n n repettons A occurs. Suppose that P(Ap (and consequently P(A c -p and when A happens n the th repetton of the experment so that X s a random varable such that P(X p and P(X -p for,,, n. Lettng x be the outcome of the th experment f(x, the p.d.f. for the th experment s gven by: f ( x p x x ( p

5 So that when X returns a the p.d.f. s p and when t returns a zero the p.d.f. s -p. usng the notons of Expected Values and Varances t can be shown that E(Xp and V(x p(-p as follows: E( X all possblex xf ( x. p ( p +.p ( p p V ( X ( x E( x f ( x ( p. p ( p + ( p. p ( p all possble x p ( p + ( p p p p + p p + p p p Snce the repettons of the experment are ndependent the jont probablty of the n repettons s: n n n x ( n x x x f ( x f ( x... f ( x p ( p p ( p n If A occurs k tmes the sum of the x s wll equal k and ths formula may be wrtten as p k (-p n-k and corresponds to the probablty of gettng a partcular sequence of experments where A occurred k tmes. The number of ways that A could happen k tmes n n experments s n!/(k!(n-k! so that the probablty of k occurrences n n experments s gven by: Whch s the Bnomal Dstrbuton. n! k ( n k p ( p k,,,..., n k!( n k! 3. 3 The Posson Dstrbuton The Posson Dstrbuton s employed n stuatons where the object of nterest s the number of tmes gven event occurs n a gven amount of space or perod of tme. Thus for example, t could be used to study the number of crashes that take place at a partcular spot over a perod of a week or t could be used to nvestgate the number of faults n a fxed length of steel. The presumpton n ths model s that successve weeks, or successve lengths of steel are ndependent of one another and that the same probablty model s applcable n each successve observaton. Ths s much the same..d. assumpton we made n the case of the Bnomal Dstrbuton. Lettng x be the number of occurrences of the event the p.d.f. s gven by: x x e λ λ λ >, x,,,...! The unknown parameter s such that E(x λ and V(x λ.

6 Examples of Contnuous Probablty Densty Functons The Unform or Rectangular Dstrbuton Ths s perhaps the smplest dstrbuton avalable. It descrbes the behavour of a contnuous random varable X that exsts n the nterval [a, b] whose probablty of beng n an nterval [c, d] layng wthn [a, b] s gven by (d-c/(b-a. That s to say the probablty of t layng n any nterval n ts range s equal to the proportonate sze of the nterval wthn the range. Furthermore X wll have the same probablty of landng n any one of a collecton of equal szed ntervals n the range (hence the name unform. Ths dstrbuton wth a and b s frequently used as the bass for random number generators n software packages and computer games, largely because t s relatvely easy to generate other more complex random varables from t. Formally: for a X b a otherwse b F ( x for x < a for a X b b x a a for x > b The Normal Dstrbuton The normal dstrbuton s probably the most frequently employed dstrbuton n statstcs wth good reason, there are sound theoretcal reasons why t can be employed n a wde range of crcumstances where averages are used. Its p.d.f. s of the form: f ( x μ σ ( x e πσ The parameters μ and σ respectvely correspond to the mean and varance of the random varable x. The fact that X s normally dstrbuted wth a mean μ and a varance σ s often denoted by X ~ N(μ, σ. The normal dstrbuton does not have a closed form representaton for the cumulatve densty F(X (.e. we cannot wrte down an algebrac expresson for t but ths wll not present any dffcultes snce t s tabulated and most statstcal software packages are capable of performng the approprate calculatons. The dstrbuton s symmetrc about the mean, bell shaped (hence the termnology are you gong to bell the mark sr? wth extremely thn tals to the extent that more than 99% of the dstrbuton lays wthn μ±σ.

7 Normal random varables possess the very useful property that lnear functons of them are also normal. Hence f X s normal then Z a + bx s also normal, and usng our rules for expectatons, E(Z a + be(x and V(Z bv(x. Lettng a -μ/σ and b /σ, Z ~ N(, whch s referred to as a Standard Normal Random Varable (ndeed the standard normal varable s frequently referred to wth the letter z, hence the term z score. Ths s most useful snce N(. s the dstrbuton that s tabulated n textbooks and programmed n software packages. Suppose we need to calculate P(X<x s some known value and X ~ N(μ, σ where the mean and varance are known values. Then snce: P ( X < x P( X μ < x μ P( X μ σ < x μ σ And snce Z (X-μ/σ: x μ σ P ( X < x P( Z < So all that s needed s to calculate the value (x -μ/σ and employ the standard normal tables or software package to evaluate the probablty.

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers

II. Random Variables. Variable Types. Variables Map Outcomes to Numbers II. Random Varables Random varables operate n much the same way as the outcomes or events n some arbtrary sample space the dstncton s that random varables are smply outcomes that are represented numercally.

More information

Chapter 5 Student Lecture Notes 5-1

Chapter 5 Student Lecture Notes 5-1 Chapter 5 Student Lecture Notes 5-1 Basc Busness Statstcs (9 th Edton) Chapter 5 Some Important Dscrete Probablty Dstrbutons 004 Prentce-Hall, Inc. Chap 5-1 Chapter Topcs The Probablty Dstrbuton of a Dscrete

More information

3: Central Limit Theorem, Systematic Errors

3: Central Limit Theorem, Systematic Errors 3: Central Lmt Theorem, Systematc Errors 1 Errors 1.1 Central Lmt Theorem Ths theorem s of prme mportance when measurng physcal quanttes because usually the mperfectons n the measurements are due to several

More information

Chapter 3 Student Lecture Notes 3-1

Chapter 3 Student Lecture Notes 3-1 Chapter 3 Student Lecture otes 3-1 Busness Statstcs: A Decson-Makng Approach 6 th Edton Chapter 3 Descrbng Data Usng umercal Measures 005 Prentce-Hall, Inc. Chap 3-1 Chapter Goals After completng ths chapter,

More information

MgtOp 215 Chapter 13 Dr. Ahn

MgtOp 215 Chapter 13 Dr. Ahn MgtOp 5 Chapter 3 Dr Ahn Consder two random varables X and Y wth,,, In order to study the relatonshp between the two random varables, we need a numercal measure that descrbes the relatonshp The covarance

More information

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics

3/3/2014. CDS M Phil Econometrics. Vijayamohanan Pillai N. Truncated standard normal distribution for a = 0.5, 0, and 0.5. CDS Mphil Econometrics Lmted Dependent Varable Models: Tobt an Plla N 1 CDS Mphl Econometrcs Introducton Lmted Dependent Varable Models: Truncaton and Censorng Maddala, G. 1983. Lmted Dependent and Qualtatve Varables n Econometrcs.

More information

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique.

Mode is the value which occurs most frequency. The mode may not exist, and even if it does, it may not be unique. 1.7.4 Mode Mode s the value whch occurs most frequency. The mode may not exst, and even f t does, t may not be unque. For ungrouped data, we smply count the largest frequency of the gven value. If all

More information

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode.

Measures of Spread IQR and Deviation. For exam X, calculate the mean, median and mode. For exam Y, calculate the mean, median and mode. Part 4 Measures of Spread IQR and Devaton In Part we learned how the three measures of center offer dfferent ways of provdng us wth a sngle representatve value for a data set. However, consder the followng

More information

Random Variables. 8.1 What is a Random Variable? Announcements: Chapter 8

Random Variables. 8.1 What is a Random Variable? Announcements: Chapter 8 Announcements: Quz starts after class today, ends Monday Last chance to take probablty survey ends Sunday mornng. Next few lectures: Today, Sectons 8.1 to 8. Monday, Secton 7.7 and extra materal Wed, Secton

More information

Linear Combinations of Random Variables and Sampling (100 points)

Linear Combinations of Random Variables and Sampling (100 points) Economcs 30330: Statstcs for Economcs Problem Set 6 Unversty of Notre Dame Instructor: Julo Garín Sprng 2012 Lnear Combnatons of Random Varables and Samplng 100 ponts 1. Four-part problem. Go get some

More information

OPERATIONS RESEARCH. Game Theory

OPERATIONS RESEARCH. Game Theory OPERATIONS RESEARCH Chapter 2 Game Theory Prof. Bbhas C. Gr Department of Mathematcs Jadavpur Unversty Kolkata, Inda Emal: bcgr.umath@gmal.com 1.0 Introducton Game theory was developed for decson makng

More information

occurrence of a larger storm than our culvert or bridge is barely capable of handling? (what is The main question is: What is the possibility of

occurrence of a larger storm than our culvert or bridge is barely capable of handling? (what is The main question is: What is the possibility of Module 8: Probablty and Statstcal Methods n Water Resources Engneerng Bob Ptt Unversty of Alabama Tuscaloosa, AL Flow data are avalable from numerous USGS operated flow recordng statons. Data s usually

More information

Tests for Two Correlations

Tests for Two Correlations PASS Sample Sze Software Chapter 805 Tests for Two Correlatons Introducton The correlaton coeffcent (or correlaton), ρ, s a popular parameter for descrbng the strength of the assocaton between two varables.

More information

Interval Estimation for a Linear Function of. Variances of Nonnormal Distributions. that Utilize the Kurtosis

Interval Estimation for a Linear Function of. Variances of Nonnormal Distributions. that Utilize the Kurtosis Appled Mathematcal Scences, Vol. 7, 013, no. 99, 4909-4918 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.1988/ams.013.37366 Interval Estmaton for a Lnear Functon of Varances of Nonnormal Dstrbutons that

More information

Understanding Annuities. Some Algebraic Terminology.

Understanding Annuities. Some Algebraic Terminology. Understandng Annutes Ma 162 Sprng 2010 Ma 162 Sprng 2010 March 22, 2010 Some Algebrac Termnology We recall some terms and calculatons from elementary algebra A fnte sequence of numbers s a functon of natural

More information

AMS Financial Derivatives I

AMS Financial Derivatives I AMS 691-03 Fnancal Dervatves I Fnal Examnaton (Take Home) Due not later than 5:00 PM, Tuesday, 14 December 2004 Robert J. Frey Research Professor Stony Brook Unversty, Appled Mathematcs and Statstcs frey@ams.sunysb.edu

More information

OCR Statistics 1 Working with data. Section 2: Measures of location

OCR Statistics 1 Working with data. Section 2: Measures of location OCR Statstcs 1 Workng wth data Secton 2: Measures of locaton Notes and Examples These notes have sub-sectons on: The medan Estmatng the medan from grouped data The mean Estmatng the mean from grouped data

More information

Probability Distributions. Statistics and Quantitative Analysis U4320. Probability Distributions(cont.) Probability

Probability Distributions. Statistics and Quantitative Analysis U4320. Probability Distributions(cont.) Probability Statstcs and Quanttatve Analss U430 Dstrbutons A. Dstrbutons: How do smple probablt tables relate to dstrbutons?. What s the of gettng a head? ( con toss) Prob. Segment 4: Dstrbutons, Unvarate & Bvarate

More information

Introduction to PGMs: Discrete Variables. Sargur Srihari

Introduction to PGMs: Discrete Variables. Sargur Srihari Introducton to : Dscrete Varables Sargur srhar@cedar.buffalo.edu Topcs. What are graphcal models (or ) 2. Use of Engneerng and AI 3. Drectonalty n graphs 4. Bayesan Networks 5. Generatve Models and Samplng

More information

4. Greek Letters, Value-at-Risk

4. Greek Letters, Value-at-Risk 4 Greek Letters, Value-at-Rsk 4 Value-at-Rsk (Hull s, Chapter 8) Math443 W08, HM Zhu Outlne (Hull, Chap 8) What s Value at Rsk (VaR)? Hstorcal smulatons Monte Carlo smulatons Model based approach Varance-covarance

More information

Notes on experimental uncertainties and their propagation

Notes on experimental uncertainties and their propagation Ed Eyler 003 otes on epermental uncertantes and ther propagaton These notes are not ntended as a complete set of lecture notes, but nstead as an enumeraton of some of the key statstcal deas needed to obtan

More information

Chapter 3 Descriptive Statistics: Numerical Measures Part B

Chapter 3 Descriptive Statistics: Numerical Measures Part B Sldes Prepared by JOHN S. LOUCKS St. Edward s Unversty Slde 1 Chapter 3 Descrptve Statstcs: Numercal Measures Part B Measures of Dstrbuton Shape, Relatve Locaton, and Detectng Outlers Eploratory Data Analyss

More information

Problem Set 6 Finance 1,

Problem Set 6 Finance 1, Carnege Mellon Unversty Graduate School of Industral Admnstraton Chrs Telmer Wnter 2006 Problem Set 6 Fnance, 47-720. (representatve agent constructon) Consder the followng two-perod, two-agent economy.

More information

Evaluating Performance

Evaluating Performance 5 Chapter Evaluatng Performance In Ths Chapter Dollar-Weghted Rate of Return Tme-Weghted Rate of Return Income Rate of Return Prncpal Rate of Return Daly Returns MPT Statstcs 5- Measurng Rates of Return

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhscsAndMathsTutor.com phscsandmathstutor.com June 2005 6. A scentst found that the tme taken, M mnutes, to carr out an eperment can be modelled b a normal random varable wth mean 155 mnutes and standard

More information

Physics 4A. Error Analysis or Experimental Uncertainty. Error

Physics 4A. Error Analysis or Experimental Uncertainty. Error Physcs 4A Error Analyss or Expermental Uncertanty Slde Slde 2 Slde 3 Slde 4 Slde 5 Slde 6 Slde 7 Slde 8 Slde 9 Slde 0 Slde Slde 2 Slde 3 Slde 4 Slde 5 Slde 6 Slde 7 Slde 8 Slde 9 Slde 20 Slde 2 Error n

More information

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE)

ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) ECONOMETRICS - FINAL EXAM, 3rd YEAR (GECO & GADE) May 17, 2016 15:30 Frst famly name: Name: DNI/ID: Moble: Second famly Name: GECO/GADE: Instructor: E-mal: Queston 1 A B C Blank Queston 2 A B C Blank Queston

More information

Lecture Note 2 Time Value of Money

Lecture Note 2 Time Value of Money Seg250 Management Prncples for Engneerng Managers Lecture ote 2 Tme Value of Money Department of Systems Engneerng and Engneerng Management The Chnese Unversty of Hong Kong Interest: The Cost of Money

More information

A Bootstrap Confidence Limit for Process Capability Indices

A Bootstrap Confidence Limit for Process Capability Indices A ootstrap Confdence Lmt for Process Capablty Indces YANG Janfeng School of usness, Zhengzhou Unversty, P.R.Chna, 450001 Abstract The process capablty ndces are wdely used by qualty professonals as an

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE VI LECTURE - 4 SPLIT-PLOT AND STRIP-PLOT DESIGNS Dr. Shalabh Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur An example to motvate

More information

Correlations and Copulas

Correlations and Copulas Correlatons and Copulas Chapter 9 Rsk Management and Fnancal Insttutons, Chapter 6, Copyrght John C. Hull 2006 6. Coeffcent of Correlaton The coeffcent of correlaton between two varables V and V 2 s defned

More information

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999

FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS. Richard M. Levich. New York University Stern School of Business. Revised, February 1999 FORD MOTOR CREDIT COMPANY SUGGESTED ANSWERS by Rchard M. Levch New York Unversty Stern School of Busness Revsed, February 1999 1 SETTING UP THE PROBLEM The bond s beng sold to Swss nvestors for a prce

More information

arxiv: v1 [q-fin.pm] 13 Feb 2018

arxiv: v1 [q-fin.pm] 13 Feb 2018 WHAT IS THE SHARPE RATIO, AND HOW CAN EVERYONE GET IT WRONG? arxv:1802.04413v1 [q-fn.pm] 13 Feb 2018 IGOR RIVIN Abstract. The Sharpe rato s the most wdely used rsk metrc n the quanttatve fnance communty

More information

Midterm Exam. Use the end of month price data for the S&P 500 index in the table below to answer the following questions.

Midterm Exam. Use the end of month price data for the S&P 500 index in the table below to answer the following questions. Unversty of Washngton Summer 2001 Department of Economcs Erc Zvot Economcs 483 Mdterm Exam Ths s a closed book and closed note exam. However, you are allowed one page of handwrtten notes. Answer all questons

More information

Multifactor Term Structure Models

Multifactor Term Structure Models 1 Multfactor Term Structure Models A. Lmtatons of One-Factor Models 1. Returns on bonds of all maturtes are perfectly correlated. 2. Term structure (and prces of every other dervatves) are unquely determned

More information

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS

CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS CHAPTER 9 FUNCTIONAL FORMS OF REGRESSION MODELS QUESTIONS 9.1. (a) In a log-log model the dependent and all explanatory varables are n the logarthmc form. (b) In the log-ln model the dependent varable

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 0-80 /02-70 Computatonal Genomcs Normalzaton Gene Expresson Analyss Model Computatonal nformaton fuson Bologcal regulatory networks Pattern Recognton Data Analyss clusterng, classfcaton normalzaton, mss.

More information

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x

Which of the following provides the most reasonable approximation to the least squares regression line? (a) y=50+10x (b) Y=50+x (d) Y=1+50x Whch of the followng provdes the most reasonable approxmaton to the least squares regresson lne? (a) y=50+10x (b) Y=50+x (c) Y=10+50x (d) Y=1+50x (e) Y=10+x In smple lnear regresson the model that s begn

More information

CHAPTER 3: BAYESIAN DECISION THEORY

CHAPTER 3: BAYESIAN DECISION THEORY CHATER 3: BAYESIAN DECISION THEORY Decson makng under uncertanty 3 rogrammng computers to make nference from data requres nterdscplnary knowledge from statstcs and computer scence Knowledge of statstcs

More information

Likelihood Fits. Craig Blocker Brandeis August 23, 2004

Likelihood Fits. Craig Blocker Brandeis August 23, 2004 Lkelhood Fts Crag Blocker Brandes August 23, 2004 Outlne I. What s the queston? II. Lkelhood Bascs III. Mathematcal Propertes IV. Uncertantes on Parameters V. Mscellaneous VI. Goodness of Ft VII. Comparson

More information

Quiz on Deterministic part of course October 22, 2002

Quiz on Deterministic part of course October 22, 2002 Engneerng ystems Analyss for Desgn Quz on Determnstc part of course October 22, 2002 Ths s a closed book exercse. You may use calculators Grade Tables There are 90 ponts possble for the regular test, or

More information

Monte Carlo Rendering

Monte Carlo Rendering Last Tme? Monte Carlo Renderng Monte-Carlo Integraton Probabltes and Varance Analyss of Monte-Carlo Integraton Monte-Carlo n Graphcs Stratfed Samplng Importance Samplng Advanced Monte-Carlo Renderng Monte-Carlo

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #21 Scribe: Lawrence Diao April 23, 2013 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #21 Scrbe: Lawrence Dao Aprl 23, 2013 1 On-Lne Log Loss To recap the end of the last lecture, we have the followng on-lne problem wth N

More information

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2

Games and Decisions. Part I: Basic Theorems. Contents. 1 Introduction. Jane Yuxin Wang. 1 Introduction 1. 2 Two-player Games 2 Games and Decsons Part I: Basc Theorems Jane Yuxn Wang Contents 1 Introducton 1 2 Two-player Games 2 2.1 Zero-sum Games................................ 3 2.1.1 Pure Strateges.............................

More information

Financial mathematics

Financial mathematics Fnancal mathematcs Jean-Luc Bouchot jean-luc.bouchot@drexel.edu February 19, 2013 Warnng Ths s a work n progress. I can not ensure t to be mstake free at the moment. It s also lackng some nformaton. But

More information

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019

15-451/651: Design & Analysis of Algorithms January 22, 2019 Lecture #3: Amortized Analysis last changed: January 18, 2019 5-45/65: Desgn & Analyss of Algorthms January, 09 Lecture #3: Amortzed Analyss last changed: January 8, 09 Introducton In ths lecture we dscuss a useful form of analyss, called amortzed analyss, for problems

More information

EDC Introduction

EDC Introduction .0 Introducton EDC3 In the last set of notes (EDC), we saw how to use penalty factors n solvng the EDC problem wth losses. In ths set of notes, we want to address two closely related ssues. What are, exactly,

More information

Appendix - Normally Distributed Admissible Choices are Optimal

Appendix - Normally Distributed Admissible Choices are Optimal Appendx - Normally Dstrbuted Admssble Choces are Optmal James N. Bodurtha, Jr. McDonough School of Busness Georgetown Unversty and Q Shen Stafford Partners Aprl 994 latest revson September 00 Abstract

More information

Foundations of Machine Learning II TP1: Entropy

Foundations of Machine Learning II TP1: Entropy Foundatons of Machne Learnng II TP1: Entropy Gullaume Charpat (Teacher) & Gaétan Marceau Caron (Scrbe) Problem 1 (Gbbs nequalty). Let p and q two probablty measures over a fnte alphabet X. Prove that KL(p

More information

General Examination in Microeconomic Theory. Fall You have FOUR hours. 2. Answer all questions

General Examination in Microeconomic Theory. Fall You have FOUR hours. 2. Answer all questions HARVARD UNIVERSITY DEPARTMENT OF ECONOMICS General Examnaton n Mcroeconomc Theory Fall 2010 1. You have FOUR hours. 2. Answer all questons PLEASE USE A SEPARATE BLUE BOOK FOR EACH QUESTION AND WRITE THE

More information

UNIVERSITY OF VICTORIA Midterm June 6, 2018 Solutions

UNIVERSITY OF VICTORIA Midterm June 6, 2018 Solutions UIVERSITY OF VICTORIA Mdterm June 6, 08 Solutons Econ 45 Summer A0 08 age AME: STUDET UMBER: V00 Course ame & o. Descrptve Statstcs and robablty Economcs 45 Secton(s) A0 CR: 3067 Instructor: Betty Johnson

More information

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4

Elton, Gruber, Brown and Goetzmann. Modern Portfolio Theory and Investment Analysis, 7th Edition. Solutions to Text Problems: Chapter 4 Elton, Gruber, Brown and Goetzmann Modern ortfolo Theory and Investment Analyss, 7th Edton Solutons to Text roblems: Chapter 4 Chapter 4: roblem 1 A. Expected return s the sum of each outcome tmes ts assocated

More information

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression

Supplementary material for Non-conjugate Variational Message Passing for Multinomial and Binary Regression Supplementary materal for Non-conjugate Varatonal Message Passng for Multnomal and Bnary Regresson October 9, 011 1 Alternatve dervaton We wll focus on a partcular factor f a and varable x, wth the am

More information

Tests for Two Ordered Categorical Variables

Tests for Two Ordered Categorical Variables Chapter 253 Tests for Two Ordered Categorcal Varables Introducton Ths module computes power and sample sze for tests of ordered categorcal data such as Lkert scale data. Assumng proportonal odds, such

More information

Discounted Cash Flow (DCF) Analysis: What s Wrong With It And How To Fix It

Discounted Cash Flow (DCF) Analysis: What s Wrong With It And How To Fix It Dscounted Cash Flow (DCF Analyss: What s Wrong Wth It And How To Fx It Arturo Cfuentes (* CREM Facultad de Economa y Negocos Unversdad de Chle June 2014 (* Jont effort wth Francsco Hawas; Depto. de Ingenera

More information

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002

TCOM501 Networking: Theory & Fundamentals Final Examination Professor Yannis A. Korilis April 26, 2002 TO5 Networng: Theory & undamentals nal xamnaton Professor Yanns. orls prl, Problem [ ponts]: onsder a rng networ wth nodes,,,. In ths networ, a customer that completes servce at node exts the networ wth

More information

PASS Sample Size Software. :log

PASS Sample Size Software. :log PASS Sample Sze Software Chapter 70 Probt Analyss Introducton Probt and lot analyss may be used for comparatve LD 50 studes for testn the effcacy of drus desned to prevent lethalty. Ths proram module presents

More information

The Integration of the Israel Labour Force Survey with the National Insurance File

The Integration of the Israel Labour Force Survey with the National Insurance File The Integraton of the Israel Labour Force Survey wth the Natonal Insurance Fle Natale SHLOMO Central Bureau of Statstcs Kanfey Nesharm St. 66, corner of Bach Street, Jerusalem Natales@cbs.gov.l Abstact:

More information

Data Mining Linear and Logistic Regression

Data Mining Linear and Logistic Regression 07/02/207 Data Mnng Lnear and Logstc Regresson Mchael L of 26 Regresson In statstcal modellng, regresson analyss s a statstcal process for estmatng the relatonshps among varables. Regresson models are

More information

Solution of periodic review inventory model with general constrains

Solution of periodic review inventory model with general constrains Soluton of perodc revew nventory model wth general constrans Soluton of perodc revew nventory model wth general constrans Prof Dr J Benkő SZIU Gödöllő Summary Reasons for presence of nventory (stock of

More information

Finance 402: Problem Set 1 Solutions

Finance 402: Problem Set 1 Solutions Fnance 402: Problem Set 1 Solutons Note: Where approprate, the fnal answer for each problem s gven n bold talcs for those not nterested n the dscusson of the soluton. 1. The annual coupon rate s 6%. A

More information

Number of women 0.15

Number of women 0.15 . Grouped Data (a Mdponts Trmester (months Number o women Relatve Frequency Densty.5 [0, 3 40 40/400 = 0.60 0.60/3 = 0. 4.5 [3, 6 60 60/400 = 0.5 0.5/3 = 0.05 7.5 [6, 9 00 00/400 = 0.5 0.5/3 = 0.0833 0.60

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY HIGHER CERTIFICATE IN STATISTICS, 2013 MODULE 7 : Tme seres and ndex numbers Tme allowed: One and a half hours Canddates should answer THREE questons.

More information

MULTIPLE CURVE CONSTRUCTION

MULTIPLE CURVE CONSTRUCTION MULTIPLE CURVE CONSTRUCTION RICHARD WHITE 1. Introducton In the post-credt-crunch world, swaps are generally collateralzed under a ISDA Master Agreement Andersen and Pterbarg p266, wth collateral rates

More information

ISyE 512 Chapter 9. CUSUM and EWMA Control Charts. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison

ISyE 512 Chapter 9. CUSUM and EWMA Control Charts. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison ISyE 512 hapter 9 USUM and EWMA ontrol harts Instructor: Prof. Kabo Lu Department of Industral and Systems Engneerng UW-Madson Emal: klu8@wsc.edu Offce: Room 317 (Mechancal Engneerng Buldng) ISyE 512 Instructor:

More information

Global sensitivity analysis of credit risk portfolios

Global sensitivity analysis of credit risk portfolios Global senstvty analyss of credt rsk portfolos D. Baur, J. Carbon & F. Campolongo European Commsson, Jont Research Centre, Italy Abstract Ths paper proposes the use of global senstvty analyss to evaluate

More information

Elements of Economic Analysis II Lecture VI: Industry Supply

Elements of Economic Analysis II Lecture VI: Industry Supply Elements of Economc Analyss II Lecture VI: Industry Supply Ka Hao Yang 10/12/2017 In the prevous lecture, we analyzed the frm s supply decson usng a set of smple graphcal analyses. In fact, the dscusson

More information

The Mack-Method and Analysis of Variability. Erasmus Gerigk

The Mack-Method and Analysis of Variability. Erasmus Gerigk The Mac-Method and Analyss of Varablty Erasmus Gerg ontents/outlne Introducton Revew of two reservng recpes: Incremental Loss-Rato Method han-ladder Method Mac s model assumptons and estmatng varablty

More information

Principles of Finance

Principles of Finance Prncples of Fnance Grzegorz Trojanowsk Lecture 6: Captal Asset Prcng Model Prncples of Fnance - Lecture 6 1 Lecture 6 materal Requred readng: Elton et al., Chapters 13, 14, and 15 Supplementary readng:

More information

NEW APPROACH TO THEORY OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS. Valeriy I. Didenko, Aleksander V. Ivanov, Aleksey V.

NEW APPROACH TO THEORY OF SIGMA-DELTA ANALOG-TO-DIGITAL CONVERTERS. Valeriy I. Didenko, Aleksander V. Ivanov, Aleksey V. NEW APPROACH TO THEORY OF IGMA-DELTA ANALOG-TO-DIGITAL CONVERTER Valery I. Ddenko, Aleksander V. Ivanov, Aleksey V. Teplovodsky Department o Inormaton and Measurng Technques Moscow Power Engneerng Insttute

More information

Problems to be discussed at the 5 th seminar Suggested solutions

Problems to be discussed at the 5 th seminar Suggested solutions ECON4260 Behavoral Economcs Problems to be dscussed at the 5 th semnar Suggested solutons Problem 1 a) Consder an ultmatum game n whch the proposer gets, ntally, 100 NOK. Assume that both the proposer

More information

2.1 Rademacher Calculus... 3

2.1 Rademacher Calculus... 3 COS 598E: Unsupervsed Learnng Week 2 Lecturer: Elad Hazan Scrbe: Kran Vodrahall Contents 1 Introducton 1 2 Non-generatve pproach 1 2.1 Rademacher Calculus............................... 3 3 Spectral utoencoders

More information

2) In the medium-run/long-run, a decrease in the budget deficit will produce:

2) In the medium-run/long-run, a decrease in the budget deficit will produce: 4.02 Quz 2 Solutons Fall 2004 Multple-Choce Questons ) Consder the wage-settng and prce-settng equatons we studed n class. Suppose the markup, µ, equals 0.25, and F(u,z) = -u. What s the natural rate of

More information

Introduction. Chapter 7 - An Introduction to Portfolio Management

Introduction. Chapter 7 - An Introduction to Portfolio Management Introducton In the next three chapters, we wll examne dfferent aspects of captal market theory, ncludng: Brngng rsk and return nto the pcture of nvestment management Markowtz optmzaton Modelng rsk and

More information

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1

Survey of Math: Chapter 22: Consumer Finance Borrowing Page 1 Survey of Math: Chapter 22: Consumer Fnance Borrowng Page 1 APR and EAR Borrowng s savng looked at from a dfferent perspectve. The dea of smple nterest and compound nterest stll apply. A new term s the

More information

Cracking VAR with kernels

Cracking VAR with kernels CUTTIG EDGE. PORTFOLIO RISK AALYSIS Crackng VAR wth kernels Value-at-rsk analyss has become a key measure of portfolo rsk n recent years, but how can we calculate the contrbuton of some portfolo component?

More information

Теоретические основы и методология имитационного и комплексного моделирования

Теоретические основы и методология имитационного и комплексного моделирования MONTE-CARLO STATISTICAL MODELLING METHOD USING FOR INVESTIGA- TION OF ECONOMIC AND SOCIAL SYSTEMS Vladmrs Jansons, Vtaljs Jurenoks, Konstantns Ddenko (Latva). THE COMMO SCHEME OF USI G OF TRADITIO AL METHOD

More information

Simple Regression Theory II 2010 Samuel L. Baker

Simple Regression Theory II 2010 Samuel L. Baker SIMPLE REGRESSIO THEORY II Smple Regresson Theory II 00 Samuel L. Baker Assessng how good the regresson equaton s lkely to be Assgnment A gets nto drawng nferences about how close the regresson lne mght

More information

Alternatives to Shewhart Charts

Alternatives to Shewhart Charts Alternatves to Shewhart Charts CUSUM & EWMA S Wongsa Overvew Revstng Shewhart Control Charts Cumulatve Sum (CUSUM) Control Chart Eponentally Weghted Movng Average (EWMA) Control Chart 2 Revstng Shewhart

More information

Information Flow and Recovering the. Estimating the Moments of. Normality of Asset Returns

Information Flow and Recovering the. Estimating the Moments of. Normality of Asset Returns Estmatng the Moments of Informaton Flow and Recoverng the Normalty of Asset Returns Ané and Geman (Journal of Fnance, 2000) Revsted Anthony Murphy, Nuffeld College, Oxford Marwan Izzeldn, Unversty of Lecester

More information

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic

Appendix for Solving Asset Pricing Models when the Price-Dividend Function is Analytic Appendx for Solvng Asset Prcng Models when the Prce-Dvdend Functon s Analytc Ovdu L. Caln Yu Chen Thomas F. Cosmano and Alex A. Hmonas January 3, 5 Ths appendx provdes proofs of some results stated n our

More information

Scribe: Chris Berlind Date: Feb 1, 2010

Scribe: Chris Berlind Date: Feb 1, 2010 CS/CNS/EE 253: Advanced Topcs n Machne Learnng Topc: Dealng wth Partal Feedback #2 Lecturer: Danel Golovn Scrbe: Chrs Berlnd Date: Feb 1, 2010 8.1 Revew In the prevous lecture we began lookng at algorthms

More information

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed.

Final Exam. 7. (10 points) Please state whether each of the following statements is true or false. No explanation needed. Fnal Exam Fall 4 Econ 8-67 Closed Book. Formula Sheet Provded. Calculators OK. Tme Allowed: hours Please wrte your answers on the page below each queston. (5 ponts) Assume that the rsk-free nterest rate

More information

New Distance Measures on Dual Hesitant Fuzzy Sets and Their Application in Pattern Recognition

New Distance Measures on Dual Hesitant Fuzzy Sets and Their Application in Pattern Recognition Journal of Artfcal Intellgence Practce (206) : 8-3 Clausus Scentfc Press, Canada New Dstance Measures on Dual Hestant Fuzzy Sets and Ther Applcaton n Pattern Recognton L Xn a, Zhang Xaohong* b College

More information

Price and Quantity Competition Revisited. Abstract

Price and Quantity Competition Revisited. Abstract rce and uantty Competton Revsted X. Henry Wang Unversty of Mssour - Columba Abstract By enlargng the parameter space orgnally consdered by Sngh and Vves (984 to allow for a wder range of cost asymmetry,

More information

Risk and Return: The Security Markets Line

Risk and Return: The Security Markets Line FIN 614 Rsk and Return 3: Markets Professor Robert B.H. Hauswald Kogod School of Busness, AU 1/25/2011 Rsk and Return: Markets Robert B.H. Hauswald 1 Rsk and Return: The Securty Markets Lne From securtes

More information

Applications of Myerson s Lemma

Applications of Myerson s Lemma Applcatons of Myerson s Lemma Professor Greenwald 28-2-7 We apply Myerson s lemma to solve the sngle-good aucton, and the generalzaton n whch there are k dentcal copes of the good. Our objectve s welfare

More information

iii) pay F P 0,T = S 0 e δt when stock has dividend yield δ.

iii) pay F P 0,T = S 0 e δt when stock has dividend yield δ. Fnal s Wed May 7, 12:50-2:50 You are allowed 15 sheets of notes and a calculator The fnal s cumulatve, so you should know everythng on the frst 4 revews Ths materal not on those revews 184) Suppose S t

More information

A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME

A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME A MODEL OF COMPETITION AMONG TELECOMMUNICATION SERVICE PROVIDERS BASED ON REPEATED GAME Vesna Radonć Đogatovć, Valentna Radočć Unversty of Belgrade Faculty of Transport and Traffc Engneerng Belgrade, Serba

More information

A Comparison of Statistical Methods in Interrupted Time Series Analysis to Estimate an Intervention Effect

A Comparison of Statistical Methods in Interrupted Time Series Analysis to Estimate an Intervention Effect Transport and Road Safety (TARS) Research Joanna Wang A Comparson of Statstcal Methods n Interrupted Tme Seres Analyss to Estmate an Interventon Effect Research Fellow at Transport & Road Safety (TARS)

More information

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem.

Lecture 7. We now use Brouwer s fixed point theorem to prove Nash s theorem. Topcs on the Border of Economcs and Computaton December 11, 2005 Lecturer: Noam Nsan Lecture 7 Scrbe: Yoram Bachrach 1 Nash s Theorem We begn by provng Nash s Theorem about the exstance of a mxed strategy

More information

Sampling Distributions of OLS Estimators of β 0 and β 1. Monte Carlo Simulations

Sampling Distributions of OLS Estimators of β 0 and β 1. Monte Carlo Simulations Addendum to NOTE 4 Samplng Dstrbutons of OLS Estmators of β and β Monte Carlo Smulatons The True Model: s gven by the populaton regresson equaton (PRE) Y = β + β X + u = 7. +.9X + u () where β = 7. and

More information

Dependent jump processes with coupled Lévy measures

Dependent jump processes with coupled Lévy measures Dependent jump processes wth coupled Lévy measures Naoufel El-Bachr ICMA Centre, Unversty of Readng May 6, 2008 ICMA Centre Dscusson Papers n Fnance DP2008-3 Copyrght 2008 El-Bachr. All rghts reserved.

More information

Bayesian belief networks

Bayesian belief networks CS 2750 achne Learnng Lecture 12 ayesan belef networks los Hauskrecht mlos@cs.ptt.edu 5329 Sennott Square CS 2750 achne Learnng Densty estmaton Data: D { D1 D2.. Dn} D x a vector of attrbute values ttrbutes:

More information

Parallel Prefix addition

Parallel Prefix addition Marcelo Kryger Sudent ID 015629850 Parallel Prefx addton The parallel prefx adder presented next, performs the addton of two bnary numbers n tme of complexty O(log n) and lnear cost O(n). Lets notce the

More information

02_EBA2eSolutionsChapter2.pdf 02_EBA2e Case Soln Chapter2.pdf

02_EBA2eSolutionsChapter2.pdf 02_EBA2e Case Soln Chapter2.pdf 0_EBAeSolutonsChapter.pdf 0_EBAe Case Soln Chapter.pdf Chapter Solutons: 1. a. Quanttatve b. Categorcal c. Categorcal d. Quanttatve e. Categorcal. a. The top 10 countres accordng to GDP are lsted below.

More information

Introduction. Why One-Pass Statistics?

Introduction. Why One-Pass Statistics? BERKELE RESEARCH GROUP Ths manuscrpt s program documentaton for three ways to calculate the mean, varance, skewness, kurtoss, covarance, correlaton, regresson parameters and other regresson statstcs. Although

More information

Equilibrium in Prediction Markets with Buyers and Sellers

Equilibrium in Prediction Markets with Buyers and Sellers Equlbrum n Predcton Markets wth Buyers and Sellers Shpra Agrawal Nmrod Megddo Benamn Armbruster Abstract Predcton markets wth buyers and sellers of contracts on multple outcomes are shown to have unque

More information

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics

ECE 586GT: Problem Set 2: Problems and Solutions Uniqueness of Nash equilibria, zero sum games, evolutionary dynamics Unversty of Illnos Fall 08 ECE 586GT: Problem Set : Problems and Solutons Unqueness of Nash equlbra, zero sum games, evolutonary dynamcs Due: Tuesday, Sept. 5, at begnnng of class Readng: Course notes,

More information

Optimising a general repair kit problem with a service constraint

Optimising a general repair kit problem with a service constraint Optmsng a general repar kt problem wth a servce constrant Marco Bjvank 1, Ger Koole Department of Mathematcs, VU Unversty Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands Irs F.A. Vs Department

More information