Decision Analysis under Uncertainty. Christopher Grigoriou Executive MBA/HEC Lausanne

Size: px
Start display at page:

Download "Decision Analysis under Uncertainty. Christopher Grigoriou Executive MBA/HEC Lausanne"

Transcription

1 Decision Analysis under Uncertainty Christopher Grigoriou Executive MBA/HEC Lausanne

2 Introduction Examples of decision making under uncertainty in the business world; => Trade-off between bidding low to win the bid and bidding high to make a larger profit => Introducing a new product into the market (customers reaction), test market? => Insurance market All the problems have three common elements 1- The set of strategies available to the decision maker 2- The set of possible outcomes and the probabilities of these outcomes 3- A value model that prescribes monetary values for the various decision/outcome combinations 2

3 Case of an Insurance Market Uncertain prospect: during the next year probability p to have an accident Your wealth is w1 at the beginning of the year At the end of the year => wealth still w1 if no accident => wealth now w0<w1 if accident (w1-w0 = cost of repairing your car etc.) 3

4 The expected value of your wealth, w*, is the weighted average of the two possible outcomes: w* = p.w0 + (1-p).w1 Figure 1: Expected Wealth w0 w* w1 wealth The figure suggests a relatively high likelihood of accident (a low probability would place w* very close to w1) 4

5 If indifferent between - w* with certainty - the prospect of w0 with probability p and w1 with probability (1-p) => risk neutral Willing to pay an insurance premium: w1-w* for a policy that paid off w1-w0 in the event of an accident so that you get w* (w1-your premium) whatever happens 5

6 Example: A $ car / probability of a wreck is 1% => w1= ; w0= 0 ; w*= If the insurance company insures a large number of drivers, it can believe that its $ payouts will be made close to one in one hundred of its policy holders and it receives 200$ from each policy holder. Real insurance companies Costs other than claims payouts the premiums they charge exceed the amount they pay out The expected wealth of the consumer who does not insure exceeds the certain wealth of an ensured person Given a choice between an uncertain prospect with expected value of w* and alternatively w* with certainty, consumers prefer the certain alternative Consumers get more utility from the certain prospect 6

7 Expected utility with certain levels of utility 1- The following figure graphs consumer utility for the two points w0 and w1: => u(w0) is the utility you receive if you have suffered a clamity => u(w1) is the utility you receive if you do not have to worry about that clamity. => These u(w0) and u(w1) are the utility of having a certain level of wealth with certainty. 2- We can represent the different levels of utility depending on p and (1-p) Utility u(w1) p.u(w0)+(1-p).u(w1) u(w0) w0 w w* w1 Wealth 7

8 Expected utility and Insurance Premiums utility u(w1) u(w*) p.u(w0)+(1-p).u(w1) u(w0) w0 w w* w1 Wealth You exactly know, i.e. with certainty, the utility you would get with w0 or w1. Between w0 and w1, the expected utility not to be insured is less than the utility associated with w* (the case where we are insured) => the utility function for certain prospects that passes through (w0, u(w0)) and (w1, u(w1)) must lie above the line connecting the two points If the red line represents your utility, how much are you willing to pay for an insurance policy? => the consumer is indifferent between the uncertain prospect with expected value w* and w with certainty => the consumer starting with w1 would be willing to pay up to w1-w to avoid the uncertain prospect. 8

9 What do we know? What have we learnt?? (1) Risk aversion = the reluctance of a person to accept a bargain with an uncertain payoff rather than another bargain with a more certain but possibly lower expected payoff. Choice between a bet of => either receiving 100$ (50%) or nothing (50%) => or receiving some amount with certainty. Risk neutral = indifferent between the bet and a certain 50$ payment Risk averse = accept a payoff of less than 50$ (e.g 40$) with probability 100% Risk loving = Required that the payment be more than 50$ (e.g 60$) to induce him to take the certain option over the bet. 9

10 What do we know? What have we learnt?? (2) The average payoff of the bet is called the «Expected (Monetary) Value» (50$) The certain amount accepted instead of the bet is called the «certainty equivalent», the difference between it and the expected value is called the risk premium 10

11 Definition and example: Imagine a decision maker must choose amongst three decisions (d1, d2 and d3) with three possible outcomes (O1, O2 and O3) Payoff tables = listing of payoffs for all decision-outcome pairs, positive values = gains/ negative = losses Outcome Decision O1 O2 O3 D D D Safe decision = chosing D1 D3 the riskier; greater possible gains and losses Decision makers must make rational decisions based on the information they have when the decisions must be made 11

12 Possible decision criteria The maximin criterion: choose the decision that maximizes the worst payoff (for a pessimistic decision maker) => D1 with payoff 10 Avoid large losses but also fails to consider large rewards => not commonly used The maximax: choose the decision that maximizes the best payoff (optimistic decision maker or risk taker) Focuses on large gains but ignores possibles losses => seldom used Maximin and maximax criteria make no reference to how likely each outcome is (decision makers typically have at least some idea of these likelihoods and ought to use this information in the decision making process). => if outcome O1 is very unlikely, then the maximin users are overly conservative => the same if O3 is quite unlikely, the maximax users take an unnecessary risk Expected Monetary value (EMV) => The EMV approach assesses probabilities for each outcome of each decision and then calculates the expected payoff from each decision For any decision, the EMV is the weighted average of the possible payoffs for this decision, weighted by the probabilities of the outcomes. We choose the decision with the largest EMV. 12

13 Expected Monetary Value The decision maker assesses the probabilities of the three outcomes (O1, O2, O3) as 0.4, 0.4 and 0.2 For each decision: EMV for D1: 10x x x0.2 = 10 EMV for D2: -10x x x0.2 = 12 EMV for D3: -30x0.4+30x0.4+70x0.2 = 14 The optimal decision is then to choose D3 since it has the largest EMV. => We ll never get 14$ (either -30 or +30 or +70) but on average, if running that decision many times we will make a gain of about 14$ 13

14 Sensitivity Analysis Changing slightly the inputs, how are the outputs (EMVs and the best decision) modified? Modify either the outcomes or the probabilities and see how the final decision change 14

15 Decision trees =>Used to analyse complex problems with a sequence of events (decisions and outcomes) 15

16 Methodology Decompose problem into chronological sequence of decisions and events Decisions: - You decide Events: - Others decide Determine all possible scenarios (sequences of decisions and events) For each scenario: Outcome? Likelihood? 16

17 Decision nodes and Chance nodes Decision node: You choose which way to go Chance node: Chance decides which way you go Decision 1 Event 1 Probability 1 Decision 2 Event 2 Probability 2 Decision 3 Event 3 Probability 3 Probabilities sum to 1 17

18 Example 0.5 Failure Marketing effort 0.5 Success 0.75 Failure... No Marketing effort 0.25 Success Posterior probabilities = Conditional probabilities: Depend on decisions and events preceding this event 18

19 Using Precision Tree or Treeplan Summarize the data (costs, revenues, probabilities) Structure the tree: Chronological sequence of decisions and events Insert the costs, revenues and probabilities for each branch Indicate whether you are minimizing or maximizing EMV Interpret the solution: - Expected Monetary Value - Risk Profile 19

20 The value of information How much is the information worth? Should we purchase it? => the answers to these questions are embedded in the decision tree itself Expected Value of the Perfect Information => the most we would be willing to pay for the sample information Price of Information = EMV with perfect information - EMV without information 20

21 Example 1 Assume you have to ship a gift, but there is a probability 0.4 that the shipment fails. In this case you have a loss of 80. Your total wealth is 100$. You have the opportunity to insure the gift and the insurance premium costs 30. How much are you willing to pay in order to know what is going on before choosing? 21

22 Example 2 2 risky investment plans. Plan A: prob. high market 0.8 payoff associated 100; prob. low market 0.2 payoff associated 20. Plan B: prob. bad event 0.2 payoff 10; prob. nothing change event 0.5 payoff 60; prob. good event 0.3 payoff Which one would you chose? 2- How much is your willingness to pay (two cases)? 22

UNIT 5 DECISION MAKING

UNIT 5 DECISION MAKING UNIT 5 DECISION MAKING This unit: UNDER UNCERTAINTY Discusses the techniques to deal with uncertainties 1 INTRODUCTION Few decisions in construction industry are made with certainty. Need to look at: The

More information

Causes of Poor Decisions

Causes of Poor Decisions Lecture 7: Decision Analysis Decision process Decision tree analysis The Decision Process Specify objectives and the criteria for making a choice Develop alternatives Analyze and compare alternatives Select

More information

Module 15 July 28, 2014

Module 15 July 28, 2014 Module 15 July 28, 2014 General Approach to Decision Making Many Uses: Capacity Planning Product/Service Design Equipment Selection Location Planning Others Typically Used for Decisions Characterized by

More information

DECISION ANALYSIS. Decision often must be made in uncertain environments. Examples:

DECISION ANALYSIS. Decision often must be made in uncertain environments. Examples: DECISION ANALYSIS Introduction Decision often must be made in uncertain environments. Examples: Manufacturer introducing a new product in the marketplace. Government contractor bidding on a new contract.

More information

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h

Learning Objectives = = where X i is the i t h outcome of a decision, p i is the probability of the i t h Learning Objectives After reading Chapter 15 and working the problems for Chapter 15 in the textbook and in this Workbook, you should be able to: Distinguish between decision making under uncertainty and

More information

The Course So Far. Decision Making in Deterministic Domains. Decision Making in Uncertain Domains. Next: Decision Making in Uncertain Domains

The Course So Far. Decision Making in Deterministic Domains. Decision Making in Uncertain Domains. Next: Decision Making in Uncertain Domains The Course So Far Decision Making in Deterministic Domains search planning Decision Making in Uncertain Domains Uncertainty: adversarial Minimax Next: Decision Making in Uncertain Domains Uncertainty:

More information

DECISION ANALYSIS. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

DECISION ANALYSIS. (Hillier & Lieberman Introduction to Operations Research, 8 th edition) DECISION ANALYSIS (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Introduction Decision often must be made in uncertain environments Examples: Manufacturer introducing a new product

More information

Decision Making. BUS 735: Business Decision Making and Research. Learn how to conduct regression analysis with a dummy independent variable.

Decision Making. BUS 735: Business Decision Making and Research. Learn how to conduct regression analysis with a dummy independent variable. Making BUS 735: Business Making and Research 1 Goals of this section Specific goals: Learn how to conduct regression analysis with a dummy independent variable. Learning objectives: LO5: Be able to use

More information

Chapter 13 Decision Analysis

Chapter 13 Decision Analysis Problem Formulation Chapter 13 Decision Analysis Decision Making without Probabilities Decision Making with Probabilities Risk Analysis and Sensitivity Analysis Decision Analysis with Sample Information

More information

TECHNIQUES FOR DECISION MAKING IN RISKY CONDITIONS

TECHNIQUES FOR DECISION MAKING IN RISKY CONDITIONS RISK AND UNCERTAINTY THREE ALTERNATIVE STATES OF INFORMATION CERTAINTY - where the decision maker is perfectly informed in advance about the outcome of their decisions. For each decision there is only

More information

Agenda. Lecture 2. Decision Analysis. Key Characteristics. Terminology. Structuring Decision Problems

Agenda. Lecture 2. Decision Analysis. Key Characteristics. Terminology. Structuring Decision Problems Agenda Lecture 2 Theory >Introduction to Making > Making Without Probabilities > Making With Probabilities >Expected Value of Perfect Information >Next Class 1 2 Analysis >Techniques used to make decisions

More information

Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques

Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques 1 Decision Theory Using Probabilities, MV, EMV, EVPI and Other Techniques Thompson Lumber is looking at marketing a new product storage sheds. Mr. Thompson has identified three decision options (alternatives)

More information

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to:

Decision Analysis CHAPTER LEARNING OBJECTIVES CHAPTER OUTLINE. After completing this chapter, students will be able to: CHAPTER 3 Decision Analysis LEARNING OBJECTIVES After completing this chapter, students will be able to: 1. List the steps of the decision-making process. 2. Describe the types of decision-making environments.

More information

Decision Making. BUS 735: Business Decision Making and Research. exercises. Assess what we have learned. 2 Decision Making Without Probabilities

Decision Making. BUS 735: Business Decision Making and Research. exercises. Assess what we have learned. 2 Decision Making Without Probabilities Making BUS 735: Business Making and Research 1 1.1 Goals and Agenda Goals and Agenda Learning Objective Learn how to make decisions with uncertainty, without using probabilities. Practice what we learn.

More information

The Course So Far. Atomic agent: uninformed, informed, local Specific KR languages

The Course So Far. Atomic agent: uninformed, informed, local Specific KR languages The Course So Far Traditional AI: Deterministic single agent domains Atomic agent: uninformed, informed, local Specific KR languages Constraint Satisfaction Logic and Satisfiability STRIPS for Classical

More information

Unit 4.3: Uncertainty

Unit 4.3: Uncertainty Unit 4.: Uncertainty Michael Malcolm June 8, 20 Up until now, we have been considering consumer choice problems where the consumer chooses over outcomes that are known. However, many choices in economics

More information

TIm 206 Lecture notes Decision Analysis

TIm 206 Lecture notes Decision Analysis TIm 206 Lecture notes Decision Analysis Instructor: Kevin Ross 2005 Scribes: Geoff Ryder, Chris George, Lewis N 2010 Scribe: Aaron Michelony 1 Decision Analysis: A Framework for Rational Decision- Making

More information

Notes 10: Risk and Uncertainty

Notes 10: Risk and Uncertainty Economics 335 April 19, 1999 A. Introduction Notes 10: Risk and Uncertainty 1. Basic Types of Uncertainty in Agriculture a. production b. prices 2. Examples of Uncertainty in Agriculture a. crop yields

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engineering Risk Benefit Analysis 1.155, 2.943, 3.577, 6.938, 10.816, 13.621, 16.862, 22.82, ES.72, ES.721 A 1. The Multistage ecision Model George E. Apostolakis Massachusetts Institute of Technology

More information

Decision Analysis. Chapter Topics

Decision Analysis. Chapter Topics Decision Analysis Chapter Topics Components of Decision Making Decision Making without Probabilities Decision Making with Probabilities Decision Analysis with Additional Information Utility Decision Analysis

More information

1.The 6 steps of the decision process are:

1.The 6 steps of the decision process are: 1.The 6 steps of the decision process are: a. Clearly define the problem Discussion and the factors that Questions influence it. b. Develop specific and measurable objectives. c. Develop a model. d. Evaluate

More information

Decision Making. D.K.Sharma

Decision Making. D.K.Sharma Decision Making D.K.Sharma 1 Decision making Learning Objectives: To make the students understand the concepts of Decision making Decision making environment; Decision making under certainty; Decision

More information

Decision making under uncertainty

Decision making under uncertainty Decision making under uncertainty 1 Outline 1. Components of decision making 2. Criteria for decision making 3. Utility theory 4. Decision trees 5. Posterior probabilities using Bayes rule 6. The Monty

More information

Decision Making. DKSharma

Decision Making. DKSharma Decision Making DKSharma Decision making Learning Objectives: To make the students understand the concepts of Decision making Decision making environment; Decision making under certainty; Decision making

More information

Decision Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Decision Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Decision Analysis Chapter 12 12-1 Chapter Topics Components of Decision Making Decision Making without Probabilities Decision Making with Probabilities Decision Analysis with Additional Information Utility

More information

Dr. Abdallah Abdallah Fall Term 2014

Dr. Abdallah Abdallah Fall Term 2014 Quantitative Analysis Dr. Abdallah Abdallah Fall Term 2014 1 Decision analysis Fundamentals of decision theory models Ch. 3 2 Decision theory Decision theory is an analytic and systemic way to tackle problems

More information

Decision-making under conditions of risk and uncertainty

Decision-making under conditions of risk and uncertainty Decision-making under conditions of risk and uncertainty Solutions to Chapter 12 questions (a) Profit and Loss Statement for Period Ending 31 May 2000 Revenue (14 400 000 journeys): 0 3 miles (7 200 000

More information

A B C D E F 1 PAYOFF TABLE 2. States of Nature

A B C D E F 1 PAYOFF TABLE 2. States of Nature Chapter Decision Analysis Problem Formulation Decision Making without Probabilities Decision Making with Probabilities Risk Analysis and Sensitivity Analysis Decision Analysis with Sample Information Computing

More information

Decision Making Supplement A

Decision Making Supplement A Decision Making Supplement A Break-Even Analysis Break-even analysis is used to compare processes by finding the volume at which two different processes have equal total costs. Break-even point is the

More information

Chapter 18 Student Lecture Notes 18-1

Chapter 18 Student Lecture Notes 18-1 Chapter 18 Student Lecture Notes 18-1 Business Statistics: A Decision-Making Approach 6 th Edition Chapter 18 Introduction to Decision Analysis 5 Prentice-Hall, Inc. Chap 18-1 Chapter Goals After completing

More information

Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7)

Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7) Project Risk Evaluation and Management Exercises (Part II, Chapters 4, 5, 6 and 7) Chapter II.4 Exercise 1 Explain in your own words the role that data can play in the development of models of uncertainty

More information

Decision Theory. Mário S. Alvim Information Theory DCC-UFMG (2018/02)

Decision Theory. Mário S. Alvim Information Theory DCC-UFMG (2018/02) Decision Theory Mário S. Alvim (msalvim@dcc.ufmg.br) Information Theory DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Decision Theory DCC-UFMG (2018/02) 1 / 34 Decision Theory Decision theory

More information

Chapter 23: Choice under Risk

Chapter 23: Choice under Risk Chapter 23: Choice under Risk 23.1: Introduction We consider in this chapter optimal behaviour in conditions of risk. By this we mean that, when the individual takes a decision, he or she does not know

More information

Next Year s Demand -Alternatives- Low High Do nothing Expand Subcontract 40 70

Next Year s Demand -Alternatives- Low High Do nothing Expand Subcontract 40 70 Lesson 04 Decision Making Solutions Solved Problem #1: see text book Solved Problem #2: see textbook Solved Problem #3: see textbook Solved Problem #6: (costs) see textbook #1: A small building contractor

More information

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research

SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT. BF360 Operations Research SCHOOL OF BUSINESS, ECONOMICS AND MANAGEMENT BF360 Operations Research Unit 5 Moses Mwale e-mail: moses.mwale@ictar.ac.zm BF360 Operations Research Contents Unit 5: Decision Analysis 3 5.1 Components

More information

Decision Making Models

Decision Making Models Decision Making Models Prof. Yongwon Seo (seoyw@cau.ac.kr) College of Business Administration, CAU Decision Theory Decision theory problems are characterized by the following: A list of alternatives. A

More information

DECISION ANALYSIS: INTRODUCTION. Métodos Cuantitativos M. En C. Eduardo Bustos Farias 1

DECISION ANALYSIS: INTRODUCTION. Métodos Cuantitativos M. En C. Eduardo Bustos Farias 1 DECISION ANALYSIS: INTRODUCTION Cuantitativos M. En C. Eduardo Bustos Farias 1 Agenda Decision analysis in general Structuring decision problems Decision making under uncertainty - without probability

More information

Decision Analysis. Chapter 12. Chapter Topics. Decision Analysis Components of Decision Making. Decision Analysis Overview

Decision Analysis. Chapter 12. Chapter Topics. Decision Analysis Components of Decision Making. Decision Analysis Overview Chapter Topics Components of Decision Making with Additional Information Chapter 12 Utility 12-1 12-2 Overview Components of Decision Making A state of nature is an actual event that may occur in the future.

More information

Johan Oscar Ong, ST, MT

Johan Oscar Ong, ST, MT Decision Analysis Johan Oscar Ong, ST, MT Analytical Decision Making Can Help Managers to: Gain deeper insight into the nature of business relationships Find better ways to assess values in such relationships;

More information

19 Decision Making. Expected Monetary Value Expected Opportunity Loss Return-to-Risk Ratio Decision Making with Sample Information

19 Decision Making. Expected Monetary Value Expected Opportunity Loss Return-to-Risk Ratio Decision Making with Sample Information 19 Decision Making USING STATISTICS @ The Reliable Fund 19.1 Payoff Tables and Decision Trees 19.2 Criteria for Decision Making Maximax Payoff Maximin Payoff Expected Monetary Value Expected Opportunity

More information

1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes,

1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, 1. A is a decision support tool that uses a tree-like graph or model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility. A) Decision tree B) Graphs

More information

Uncertainty. Contingent consumption Subjective probability. Utility functions. BEE2017 Microeconomics

Uncertainty. Contingent consumption Subjective probability. Utility functions. BEE2017 Microeconomics Uncertainty BEE217 Microeconomics Uncertainty: The share prices of Amazon and the difficulty of investment decisions Contingent consumption 1. What consumption or wealth will you get in each possible outcome

More information

Full file at CHAPTER 3 Decision Analysis

Full file at   CHAPTER 3 Decision Analysis CHAPTER 3 Decision Analysis TRUE/FALSE 3.1 Expected Monetary Value (EMV) is the average or expected monetary outcome of a decision if it can be repeated a large number of times. 3.2 Expected Monetary Value

More information

How do we cope with uncertainty?

How do we cope with uncertainty? Topic 3: Choice under uncertainty (K&R Ch. 6) In 1965, a Frenchman named Raffray thought that he had found a great deal: He would pay a 90-year-old woman $500 a month until she died, then move into her

More information

Learning Objectives 6/2/18. Some keys from yesterday

Learning Objectives 6/2/18. Some keys from yesterday Valuation and pricing (November 5, 2013) Lecture 12 Decisions Risk & Uncertainty Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.centime.biz Some keys from yesterday Learning Objectives v Explain

More information

Chapter 3. Decision Analysis. Learning Objectives

Chapter 3. Decision Analysis. Learning Objectives Chapter 3 Decision Analysis To accompany Quantitative Analysis for Management, Eleventh Edition, by Render, Stair, and Hanna Power Point slides created by Brian Peterson Learning Objectives After completing

More information

Chapter 12. Decision Analysis

Chapter 12. Decision Analysis Page 1 of 80 Chapter 12. Decision Analysis [Page 514] [Page 515] In the previous chapters dealing with linear programming, models were formulated and solved in order to aid the manager in making a decision.

More information

Decision Analysis Models

Decision Analysis Models Decision Analysis Models 1 Outline Decision Analysis Models Decision Making Under Ignorance and Risk Expected Value of Perfect Information Decision Trees Incorporating New Information Expected Value of

More information

Handling Uncertainty. Ender Ozcan given by Peter Blanchfield

Handling Uncertainty. Ender Ozcan given by Peter Blanchfield Handling Uncertainty Ender Ozcan given by Peter Blanchfield Objectives Be able to construct a payoff table to represent a decision problem. Be able to apply the maximin and maximax criteria to the table.

More information

Objective of Decision Analysis. Determine an optimal decision under uncertain future events

Objective of Decision Analysis. Determine an optimal decision under uncertain future events Decision Analysis Objective of Decision Analysis Determine an optimal decision under uncertain future events Formulation of Decision Problem Clear statement of the problem Identify: The decision alternatives

More information

Chapter 2 supplement. Decision Analysis

Chapter 2 supplement. Decision Analysis Chapter 2 supplement At the operational level hundreds of decisions are made in order to achieve local outcomes that contribute to the achievement of the company's overall strategic goal. These local outcomes

More information

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10.

Subject : Computer Science. Paper: Machine Learning. Module: Decision Theory and Bayesian Decision Theory. Module No: CS/ML/10. e-pg Pathshala Subject : Computer Science Paper: Machine Learning Module: Decision Theory and Bayesian Decision Theory Module No: CS/ML/0 Quadrant I e-text Welcome to the e-pg Pathshala Lecture Series

More information

Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7)

Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7) Project Risk Analysis and Management Exercises (Part II, Chapters 6, 7) Chapter II.6 Exercise 1 For the decision tree in Figure 1, assume Chance Events E and F are independent. a) Draw the appropriate

More information

Price Theory Lecture 9: Choice Under Uncertainty

Price Theory Lecture 9: Choice Under Uncertainty I. Probability and Expected Value Price Theory Lecture 9: Choice Under Uncertainty In all that we have done so far, we've assumed that choices are being made under conditions of certainty -- prices are

More information

BEEM109 Experimental Economics and Finance

BEEM109 Experimental Economics and Finance University of Exeter Recap Last class we looked at the axioms of expected utility, which defined a rational agent as proposed by von Neumann and Morgenstern. We then proceeded to look at empirical evidence

More information

What do Coin Tosses and Decision Making under Uncertainty, have in common?

What do Coin Tosses and Decision Making under Uncertainty, have in common? What do Coin Tosses and Decision Making under Uncertainty, have in common? J. Rene van Dorp (GW) Presentation EMSE 1001 October 27, 2017 Presented by: J. Rene van Dorp 10/26/2017 1 About René van Dorp

More information

Introduction LEARNING OBJECTIVES. The Six Steps in Decision Making. Thompson Lumber Company. Thompson Lumber Company

Introduction LEARNING OBJECTIVES. The Six Steps in Decision Making. Thompson Lumber Company. Thompson Lumber Company Valua%on and pricing (November 5, 2013) Lecture 4 Decision making (part 1) Olivier J. de Jong, LL.M., MM., MBA, CFD, CFFA, AA www.olivierdejong.com LEARNING OBJECTIVES 1. List the steps of the decision-making

More information

05/05/2011. Degree of Risk. Degree of Risk. BUSA 4800/4810 May 5, Uncertainty

05/05/2011. Degree of Risk. Degree of Risk. BUSA 4800/4810 May 5, Uncertainty BUSA 4800/4810 May 5, 2011 Uncertainty We must believe in luck. For how else can we explain the success of those we don t like? Jean Cocteau Degree of Risk We incorporate risk and uncertainty into our

More information

DECISION MAKING. Decision making under conditions of uncertainty

DECISION MAKING. Decision making under conditions of uncertainty DECISION MAKING Decision making under conditions of uncertainty Set of States of nature: S 1,..., S j,..., S n Set of decision alternatives: d 1,...,d i,...,d m The outcome of the decision C ij depends

More information

stake and attain maximum profitability. Therefore, it s judicious to employ the best practices in

stake and attain maximum profitability. Therefore, it s judicious to employ the best practices in 1 2 Success or failure of any undertaking mainly lies with the decisions made in every step of the undertaking. When it comes to business the main goal would be to maximize shareholders stake and attain

More information

36106 Managerial Decision Modeling Decision Analysis in Excel

36106 Managerial Decision Modeling Decision Analysis in Excel 36106 Managerial Decision Modeling Decision Analysis in Excel Kipp Martin University of Chicago Booth School of Business October 19, 2017 Reading and Excel Files Reading: Powell and Baker: Sections 13.1,

More information

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives

Making Hard Decision. ENCE 627 Decision Analysis for Engineering. Identify the decision situation and understand objectives. Identify alternatives CHAPTER Duxbury Thomson Learning Making Hard Decision Third Edition RISK ATTITUDES A. J. Clark School of Engineering Department of Civil and Environmental Engineering 13 FALL 2003 By Dr. Ibrahim. Assakkaf

More information

Textbook: pp Chapter 3: Decision Analysis

Textbook: pp Chapter 3: Decision Analysis 1 Textbook: pp. 81-128 Chapter 3: Decision Analysis 2 Learning Objectives After completing this chapter, students will be able to: List the steps of the decision-making process. Describe the types of decision-making

More information

IX. Decision Theory. A. Basic Definitions

IX. Decision Theory. A. Basic Definitions IX. Decision Theory Techniques used to find optimal solutions in situations where a decision maker is faced with several alternatives (Actions) and an uncertain or risk-filled future (Events or States

More information

Risk -The most important concept of investment

Risk -The most important concept of investment Investment vs. Saving How is investing different from saving? Investing means putting money to work to earn a rate of, while saving means put the money in a home safe, or a safe deposit box. Investments

More information

Outline. Decision Making Theory and Homeland Security. Readings. AGEC689: Economic Issues and Policy Implications of Homeland Security

Outline. Decision Making Theory and Homeland Security. Readings. AGEC689: Economic Issues and Policy Implications of Homeland Security Decision Making Theory and Homeland Security AGEC689: Economic Issues and Policy Implications of Homeland Security Yanhong Jin AGEC689: Economic Issues and Policy Implications of Homeland Security Yanhong

More information

ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson

ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson ECON 312: MICROECONOMICS II Lecture 11: W/C 25 th April 2016 Uncertainty and Risk Dr Ebo Turkson Chapter 17 Uncertainty Topics Degree of Risk. Decision Making Under Uncertainty. Avoiding Risk. Investing

More information

8. Uncertainty. Reading: BGVW, Chapter 7

8. Uncertainty. Reading: BGVW, Chapter 7 8. Uncertainty Reading: BGVW, Chapter 7 1. Introduction Uncertainties abound future: incomes/prices/populations analysis: dose-response/valuation/climate/effects of regulation on environmental quality/longevity

More information

Energy and public Policies

Energy and public Policies Energy and public Policies Decision making under uncertainty Contents of class #1 Page 1 1. Decision Criteria a. Dominated decisions b. Maxmin Criterion c. Maximax Criterion d. Minimax Regret Criterion

More information

Insurance, Adverse Selection and Moral Hazard

Insurance, Adverse Selection and Moral Hazard University of California, Berkeley Spring 2007 ECON 100A Section 115, 116 Insurance, Adverse Selection and Moral Hazard I. Risk Premium Risk Premium is the amount of money an individual is willing to pay

More information

Chapter 18: Risky Choice and Risk

Chapter 18: Risky Choice and Risk Chapter 18: Risky Choice and Risk Risky Choice Probability States of Nature Expected Utility Function Interval Measure Violations Risk Preference State Dependent Utility Risk-Aversion Coefficient Actuarially

More information

ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008

ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008 ECO303: Intermediate Microeconomic Theory Benjamin Balak, Spring 2008 Game Theory: FINAL EXAMINATION 1. Under a mixed strategy, A) players move sequentially. B) a player chooses among two or more pure

More information

MBF1413 Quantitative Methods

MBF1413 Quantitative Methods MBF1413 Quantitative Methods Prepared by Dr Khairul Anuar 4: Decision Analysis Part 1 www.notes638.wordpress.com 1. Problem Formulation a. Influence Diagrams b. Payoffs c. Decision Trees Content 2. Decision

More information

UTILITY ANALYSIS HANDOUTS

UTILITY ANALYSIS HANDOUTS UTILITY ANALYSIS HANDOUTS 1 2 UTILITY ANALYSIS Motivating Example: Your total net worth = $400K = W 0. You own a home worth $250K. Probability of a fire each yr = 0.001. Insurance cost = $1K. Question:

More information

Managerial Economics

Managerial Economics Managerial Economics Unit 9: Risk Analysis Rudolf Winter-Ebmer Johannes Kepler University Linz Winter Term 2015 Managerial Economics: Unit 9 - Risk Analysis 1 / 49 Objectives Explain how managers should

More information

Decision Analysis REVISED TEACHING SUGGESTIONS ALTERNATIVE EXAMPLES

Decision Analysis REVISED TEACHING SUGGESTIONS ALTERNATIVE EXAMPLES M03_REND6289_0_IM_C03.QXD 5/7/08 3:48 PM Page 7 3 C H A P T E R Decision Analysis TEACHING SUGGESTIONS Teaching Suggestion 3.: Using the Steps of the Decision-Making Process. The six steps used in decision

More information

Decision Analysis. Introduction. Job Counseling

Decision Analysis. Introduction. Job Counseling Decision Analysis Max, min, minimax, maximin, maximax, minimin All good cat names! 1 Introduction Models provide insight and understanding We make decisions Decision making is difficult because: future

More information

Review of Expected Operations

Review of Expected Operations Economic Risk and Decision Analysis for Oil and Gas Industry CE81.98 School of Engineering and Technology Asian Institute of Technology January Semester Presented by Dr. Thitisak Boonpramote Department

More information

Decision Theory. Refail N. Kasimbeyli

Decision Theory. Refail N. Kasimbeyli Decision Theory Refail N. Kasimbeyli Chapter 3 3 Utility Theory 3.1 Single-attribute utility 3.2 Interpreting utility functions 3.3 Utility functions for non-monetary attributes 3.4 The axioms of utility

More information

- Economic Climate Country Decline Stable Improve South Korea Philippines Mexico

- Economic Climate Country Decline Stable Improve South Korea Philippines Mexico 1) Micro-comp is a Toronto based manufacturer of personal computers. It is planning to build a new manufacturing and distribution facility in South Korea, Philippines, or Mexico. The profit (in $ millions)

More information

Phil 321: Week 2. Decisions under ignorance

Phil 321: Week 2. Decisions under ignorance Phil 321: Week 2 Decisions under ignorance Decisions under Ignorance 1) Decision under risk: The agent can assign probabilities (conditional or unconditional) to each state. 2) Decision under ignorance:

More information

P1 Performance Operations

P1 Performance Operations Operational Level Paper P1 Performance Operations Examiner s Answers SECTION A Answer to Question One 1.1 The correct answer is D. 1.2 $40,000 x 3.791 = $151,640 $50,000 / $151,640 = 0.3297 = 33.0% The

More information

Consumer s behavior under uncertainty

Consumer s behavior under uncertainty Consumer s behavior under uncertainty Microéconomie, Chap 5 1 Plan of the talk What is a risk? Preferences under uncertainty Demand of risky assets Reducing risks 2 Introduction How does the consumer choose

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Fundamentals of Managerial and Strategic Decision-Making Resource Allocation and Decision Analysis ECON 800) Spring 0 Fundamentals of Managerial and Strategic Decision-Making Reading: Relevant Costs and Revenues ECON 800 Coursepak, Page ) Definitions and Concepts:

More information

Making Choices. Making Choices CHAPTER FALL ENCE 627 Decision Analysis for Engineering. Making Hard Decision. Third Edition

Making Choices. Making Choices CHAPTER FALL ENCE 627 Decision Analysis for Engineering. Making Hard Decision. Third Edition CHAPTER Duxbury Thomson Learning Making Hard Decision Making Choices Third Edition A. J. Clark School of Engineering Department of Civil and Environmental Engineering 4b FALL 23 By Dr. Ibrahim. Assakkaf

More information

Decision Trees Decision Tree

Decision Trees Decision Tree Decision Trees The Payoff Table and the Opportunity Loss Table are two very similar ways of looking at a Decision Analysis problem. Another way of seeing the structure of the problem is the Decision Tree.

More information

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY

CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY CONVENTIONAL FINANCE, PROSPECT THEORY, AND MARKET EFFICIENCY PART ± I CHAPTER 1 CHAPTER 2 CHAPTER 3 Foundations of Finance I: Expected Utility Theory Foundations of Finance II: Asset Pricing, Market Efficiency,

More information

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude

Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Models & Decision with Financial Applications Unit 3: Utility Function and Risk Attitude Duan LI Department of Systems Engineering & Engineering Management The Chinese University of Hong Kong http://www.se.cuhk.edu.hk/

More information

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Decision Analysis

Resource Allocation and Decision Analysis (ECON 8010) Spring 2014 Foundations of Decision Analysis Resource Allocation and Decision Analysis (ECON 800) Spring 04 Foundations of Decision Analysis Reading: Decision Analysis (ECON 800 Coursepak, Page 5) Definitions and Concepts: Decision Analysis a logical

More information

Payoff Scale Effects and Risk Preference Under Real and Hypothetical Conditions

Payoff Scale Effects and Risk Preference Under Real and Hypothetical Conditions Payoff Scale Effects and Risk Preference Under Real and Hypothetical Conditions Susan K. Laury and Charles A. Holt Prepared for the Handbook of Experimental Economics Results February 2002 I. Introduction

More information

ECON Microeconomics II IRYNA DUDNYK. Auctions.

ECON Microeconomics II IRYNA DUDNYK. Auctions. Auctions. What is an auction? When and whhy do we need auctions? Auction is a mechanism of allocating a particular object at a certain price. Allocating part concerns who will get the object and the price

More information

Sensitivity = NPV / PV of key input

Sensitivity = NPV / PV of key input SECTION A 20 MARKS Question One 1.1 The answer is D 1.2 The answer is C Sensitivity measures the percentage change in a key input (for example initial outlay, direct material, direct labour, residual value)

More information

Overview:Time and Uncertainty. Economics of Time: Some Issues

Overview:Time and Uncertainty. Economics of Time: Some Issues Overview:Time and Uncertainty Intertemporal Prices and Present Value Uncertainty Irreversible Investments and Option Value Economics of Time: Some Issues Cash now versus cash payments in the future? Future

More information

Chapter 4: Decision Analysis Suggested Solutions

Chapter 4: Decision Analysis Suggested Solutions Chapter 4: Decision Analysis Suggested Solutions Fall 2010 Que 1a. 250 25 75 b. Decision Maximum Minimum Profit Profit 250 25 75 Optimistic approach: select Conservative approach: select Regret or opportunity

More information

April 28, Decision Analysis 2. Utility Theory The Value of Information

April 28, Decision Analysis 2. Utility Theory The Value of Information 15.053 April 28, 2005 Decision Analysis 2 Utility Theory The Value of Information 1 Lotteries and Utility L1 $50,000 $ 0 Lottery 1: a 50% chance at $50,000 and a 50% chance of nothing. L2 $20,000 Lottery

More information

New product launch: herd seeking or herd. preventing?

New product launch: herd seeking or herd. preventing? New product launch: herd seeking or herd preventing? Ting Liu and Pasquale Schiraldi December 29, 2008 Abstract A decision maker offers a new product to a fixed number of adopters. The decision maker does

More information

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals.

When one firm considers changing its price or output level, it must make assumptions about the reactions of its rivals. Chapter 3 Oligopoly Oligopoly is an industry where there are relatively few sellers. The product may be standardized (steel) or differentiated (automobiles). The firms have a high degree of interdependence.

More information

Decision Analysis CHAPTER 19 LEARNING OBJECTIVES

Decision Analysis CHAPTER 19 LEARNING OBJECTIVES CHAPTER 19 Decision Analysis LEARNING OBJECTIVES This chapter describes how to use decision analysis to improve management decisions, thereby enabling you to: 1. Make decisions under certainty by constructing

More information

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017

Problem Set 2. Theory of Banking - Academic Year Maria Bachelet March 2, 2017 Problem Set Theory of Banking - Academic Year 06-7 Maria Bachelet maria.jua.bachelet@gmai.com March, 07 Exercise Consider an agency relationship in which the principal contracts the agent, whose effort

More information

Monash University School of Information Management and Systems IMS3001 Business Intelligence Systems Semester 1, 2004.

Monash University School of Information Management and Systems IMS3001 Business Intelligence Systems Semester 1, 2004. Exercise 7 1 : Decision Trees Monash University School of Information Management and Systems IMS3001 Business Intelligence Systems Semester 1, 2004 Tutorial Week 9 Purpose: This exercise is aimed at assisting

More information